These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22341491)

  • 1. An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements.
    Donatello S; Fernández-Jiménez A; Palomo A
    J Hazard Mater; 2012 Apr; 213-214():207-15. PubMed ID: 22341491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury leaching characteristics of waste treatment residues generated from various sources in Korea.
    Cho JH; Eom Y; Park JM; Lee SB; Hong JH; Lee TG
    Waste Manag; 2013 Jul; 33(7):1675-81. PubMed ID: 23680269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic study on elemental mercury release from fly ashes and hydrated fly ash cement pastes.
    Du W; Zhang CY; Kong XM; Zhuo YQ
    Chemosphere; 2020 Feb; 241():125028. PubMed ID: 31629233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study on mercury re-emissions during fly ash utilization].
    Meng Y; Wang SX
    Huan Jing Ke Xue; 2012 Sep; 33(9):2993-9. PubMed ID: 23243850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash.
    Diaz-Loya EI; Allouche EN; Eklund S; Joshi AR; Kupwade-Patil K
    Waste Manag; 2012 Aug; 32(8):1521-7. PubMed ID: 22542857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements.
    Shi C; Fernández-Jiménez A
    J Hazard Mater; 2006 Oct; 137(3):1656-63. PubMed ID: 16787699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkali activation of recovered fuel-biofuel fly ash from fluidised-bed combustion: Stabilisation/solidification of heavy metals.
    Yliniemi J; Pesonen J; Tiainen M; Illikainen M
    Waste Manag; 2015 Sep; 43():273-82. PubMed ID: 26054963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation and use of biomass fly ash in cement-based materials.
    Rajamma R; Ball RJ; Tarelho LA; Allen GC; Labrincha JA; Ferreira VM
    J Hazard Mater; 2009 Dec; 172(2-3):1049-60. PubMed ID: 19699034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes.
    Alvarez-Ayuso E; Querol X; Plana F; Alastuey A; Moreno N; Izquierdo M; Font O; Moreno T; Diez S; Vázquez E; Barra M
    J Hazard Mater; 2008 Jun; 154(1-3):175-83. PubMed ID: 18006153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel silica alumina-based backfill material composed of coal refuse and fly ash.
    Yao Y; Sun H
    J Hazard Mater; 2012 Apr; 213-214():71-82. PubMed ID: 22336582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High fire resistance in blocks containing coal combustion fly ashes and bottom ash.
    García Arenas C; Marrero M; Leiva C; Solís-Guzmán J; Vilches Arenas LF
    Waste Manag; 2011 Aug; 31(8):1783-9. PubMed ID: 21511456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and adsorption properties of titanosilicates ETS-4 and ETS-10 from fly ash.
    Liu L; Singh R; Li G; Xiao P; Webley P; Zhai Y
    J Hazard Mater; 2011 Nov; 195():340-5. PubMed ID: 21899949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards.
    Oliveira ML; Marostega F; Taffarel SR; Saikia BK; Waanders FB; DaBoit K; Baruah BP; Silva LF
    Sci Total Environ; 2014 Jan; 468-469():1128-37. PubMed ID: 24121564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of olive biomass fly ash in the preparation of environmentally friendly mortars.
    Cruz-Yusta M; Mármol I; Morales J; Sánchez L
    Environ Sci Technol; 2011 Aug; 45(16):6991-6. PubMed ID: 21728343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of ammonia on mercury leaching from coal fly ash.
    Wang J; Wang T; Mallhi H; Liu Y; Ban H; Ladwig K
    Chemosphere; 2007 Nov; 69(10):1586-92. PubMed ID: 17604819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of metal leaching in brown coal fly ash using geopolymers.
    Bankowski P; Zou L; Hodges R
    J Hazard Mater; 2004 Oct; 114(1-3):59-67. PubMed ID: 15511575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of MSW fly ash-calcium sulfoaluminate cement matrix and stabilization/solidification on heavy metals.
    Qian GR; Shi J; Cao YL; Xu YF; Chui PC
    J Hazard Mater; 2008 Mar; 152(1):196-203. PubMed ID: 17728061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation and stabilization of elemental mercury from coal-fired flue gas by sulfur monobromide.
    Qu Z; Yan N; Liu P; Guo Y; Jia J
    Environ Sci Technol; 2010 May; 44(10):3889-94. PubMed ID: 20408537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical, mineralogical and morphological changes in weathered coal fly ash: a case study of a brine impacted wet ash dump.
    Eze CP; Nyale SM; Akinyeye RO; Gitari WM; Akinyemi SA; Fatoba OO; Petrik LF
    J Environ Manage; 2013 Nov; 129():479-92. PubMed ID: 24013557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water.
    Tauanov Z; Tsakiridis PE; Mikhalovsky SV; Inglezakis VJ
    J Environ Manage; 2018 Oct; 224():164-171. PubMed ID: 30041095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.