These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 22341491)
21. The occurrence of hazardous volatile elements and nanoparticles in Bulgarian coal fly ashes and the effect on human health exposure. Silva LF; DaBoit K; Sampaio CH; Jasper A; Andrade ML; Kostova IJ; Waanders FB; Henke KR; Hower JC Sci Total Environ; 2012 Feb; 416():513-26. PubMed ID: 22200375 [TBL] [Abstract][Full Text] [Related]
22. Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material. Colangelo F; Cioffi R; Montagnaro F; Santoro L Waste Manag; 2012 Jun; 32(6):1179-85. PubMed ID: 22244615 [TBL] [Abstract][Full Text] [Related]
23. Solidification/stabilization of fly and bottom ash from medical waste incineration facility. Anastasiadou K; Christopoulos K; Mousios E; Gidarakos E J Hazard Mater; 2012 Mar; 207-208():165-70. PubMed ID: 21784578 [TBL] [Abstract][Full Text] [Related]
24. Mercury removal from coal combustion flue gas by modified fly ash. Xu W; Wang H; Zhu T; Kuang J; Jing P J Environ Sci (China); 2013 Feb; 25(2):393-8. PubMed ID: 23596961 [TBL] [Abstract][Full Text] [Related]
26. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production. Wu K; Shi H; Guo X Waste Manag; 2011; 31(9-10):2001-8. PubMed ID: 21616653 [TBL] [Abstract][Full Text] [Related]
27. Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete. Shi XS; Collins FG; Zhao XL; Wang QY J Hazard Mater; 2012 Oct; 237-238():20-9. PubMed ID: 22954605 [TBL] [Abstract][Full Text] [Related]
28. Modeling batch leaching behavior of arsenic and selenium from bituminous coal fly ashes. Su T; Wang J Chemosphere; 2011 Nov; 85(8):1368-74. PubMed ID: 21880348 [TBL] [Abstract][Full Text] [Related]
29. Resistance of blended alkali-activated fly ash-OPC mortar to mild-concentration sulfuric and acetic acid attack. Chen K; Wu D; Fei S; Pan C; Shen X; Zhang C; Hu J Environ Sci Pollut Res Int; 2022 Apr; 29(17):25694-25708. PubMed ID: 34845643 [TBL] [Abstract][Full Text] [Related]
30. Gas-phase elemental mercury removal from flue gas by cobalt-modified fly ash at low temperatures. Xu Y; Zhong Q; Xing L Environ Technol; 2014; 35(21-24):2870-7. PubMed ID: 25176492 [TBL] [Abstract][Full Text] [Related]
31. Applied investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in Chinese anthracite-derived fly ash. Silva LF; Jasper A; Andrade ML; Sampaio CH; Dai S; Li X; Li T; Chen W; Wang X; Liu H; Zhao L; Hopps SG; Jewell RF; Hower JC Sci Total Environ; 2012 Mar; 419():250-64. PubMed ID: 22297247 [TBL] [Abstract][Full Text] [Related]
32. Immobilization of simulated radionuclide 133Cs+ by fly ash-based geopolymer. Li Q; Sun Z; Tao D; Xu Y; Li P; Cui H; Zhai J J Hazard Mater; 2013 Nov; 262():325-31. PubMed ID: 24056244 [TBL] [Abstract][Full Text] [Related]
33. Influence of alkali cation on the mechanical properties and durability of fly ash based geopolymers. Nikolić I; Zejak R; Jankovič-Častvan I; Karanović L; Radmilović V; Radmilović V Acta Chim Slov; 2013; 60(3):636-43. PubMed ID: 24169718 [TBL] [Abstract][Full Text] [Related]
34. Resistance to Chemical Attack of Hybrid Fly Ash-Based Alkali-Activated Concretes. Valencia-Saavedra WG; Mejía de Gutiérrez R Molecules; 2020 Jul; 25(15):. PubMed ID: 32726959 [TBL] [Abstract][Full Text] [Related]
35. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920 [TBL] [Abstract][Full Text] [Related]
36. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials. Huang X; Zhuang R; Muhammad F; Yu L; Shiau Y; Li D Chemosphere; 2017 Feb; 168():300-308. PubMed ID: 27810528 [TBL] [Abstract][Full Text] [Related]
37. Stabilization/solidification of fly ashes and concrete production from bottom and circulating ashes produced in a power plant working under mono and co-combustion conditions. Barbosa R; Lapa N; Lopes H; Gulyurtlu I; Mendes B Waste Manag; 2011; 31(9-10):2009-19. PubMed ID: 21605964 [TBL] [Abstract][Full Text] [Related]
38. An assessment of the significance of mercury release from coal fly ash. Gustin MS; Ladwig K J Air Waste Manag Assoc; 2004 Mar; 54(3):320-30. PubMed ID: 15061613 [TBL] [Abstract][Full Text] [Related]
39. Extensive FE-SEM/EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash. Ribeiro J; DaBoit K; Flores D; Kronbauer MA; Silva LF Sci Total Environ; 2013 May; 452-453():98-107. PubMed ID: 23500403 [TBL] [Abstract][Full Text] [Related]
40. Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium. Goñi S; Guerrero A; Lorenzo MP J Hazard Mater; 2006 Oct; 137(3):1608-17. PubMed ID: 16759800 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]