These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22341700)

  • 1. Influence of pH and surface oxygen-containing groups on multiwalled carbon nanotubes on the transformation and adsorption of 1-naphthol.
    Wu W; Jiang W; Xia W; Yang K; Xing B
    J Colloid Interface Sci; 2012 May; 374(1):226-31. PubMed ID: 22341700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the sequestration mechanisms of Cd(II) and 1-naphthol on discharged multi-walled carbon nanotubes in aqueous environment.
    Yang S; Guo Z; Sheng G; Wang X
    Sci Total Environ; 2012 Mar; 420():214-21. PubMed ID: 22330423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of nickel ions from water by multi-walled carbon nanotubes.
    Kandah MI; Meunier JL
    J Hazard Mater; 2007 Jul; 146(1-2):283-8. PubMed ID: 17196328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of surface oxidation of multiwalled carbon nanotubes on the adsorption affinity and capacity of polar and nonpolar organic compounds in aqueous phase.
    Wu W; Chen W; Lin D; Yang K
    Environ Sci Technol; 2012 May; 46(10):5446-54. PubMed ID: 22524230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive adsorption of naphthalene with 2,4-dichlorophenol and 4-chloroaniline on multiwalled carbon nanotubes.
    Yang K; Wu W; Jing Q; Jiang W; Xing B
    Environ Sci Technol; 2010 Apr; 44(8):3021-7. PubMed ID: 20201557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes.
    Cho HH; Smith BA; Wnuk JD; Fairbrother DH; Ball WP
    Environ Sci Technol; 2008 Apr; 42(8):2899-905. PubMed ID: 18497141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes.
    Sheng GD; Shao DD; Ren XM; Wang XQ; Li JX; Chen YX; Wang XK
    J Hazard Mater; 2010 Jun; 178(1-3):505-16. PubMed ID: 20153109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption and desorption of atrazine on carbon nanotubes.
    Yan XM; Shi BY; Lu JJ; Feng CH; Wang DS; Tang HX
    J Colloid Interface Sci; 2008 May; 321(1):30-8. PubMed ID: 18294649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption.
    Schierz A; Zänker H
    Environ Pollut; 2009 Apr; 157(4):1088-94. PubMed ID: 19010575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review.
    Gupta VK; Kumar R; Nayak A; Saleh TA; Barakat MA
    Adv Colloid Interface Sci; 2013 Jun; 193-194():24-34. PubMed ID: 23579224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of carbon nanotubes from aqueous environment with filter paper.
    Yang ST; Wang H; Wang Y; Wang Y; Nie H; Liu Y
    Chemosphere; 2011 Jan; 82(4):621-6. PubMed ID: 21071063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity- and structure-controlled process.
    Peng H; Pan B; Wu M; Liu Y; Zhang D; Xing B
    J Hazard Mater; 2012 Sep; 233-234():89-96. PubMed ID: 22819959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures.
    Chen B; Chen Z
    Chemosphere; 2009 Jun; 76(1):127-33. PubMed ID: 19282020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes.
    Cho HH; Huang H; Schwab K
    Langmuir; 2011 Nov; 27(21):12960-7. PubMed ID: 21913654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of phenanthrene, 2-naphthol, and 1-naphthylamine to colloidal oxidized multiwalled carbon nanotubes: effects of humic acid and surfactant modification.
    Hou L; Zhu D; Wang X; Wang L; Zhang C; Chen W
    Environ Toxicol Chem; 2013 Mar; 32(3):493-500. PubMed ID: 23212963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of naphthols and analogues by the combined use of an oxidoreductase polyphenol oxidase and a biopolymer chitosan from aqueous solutions.
    Kimura Y; Gotoh A; Shinozaki F; Kashiwada A; Yamada K
    Environ Technol; 2014; 35(21-24):2910-9. PubMed ID: 25189838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes.
    Xu D; Tan X; Chen C; Wang X
    J Hazard Mater; 2008 Jun; 154(1-3):407-16. PubMed ID: 18053642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of Triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions.
    Bai Y; Lin D; Wu F; Wang Z; Xing B
    Chemosphere; 2010 Apr; 79(4):362-7. PubMed ID: 20206374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption mechanisms of perfluorinated compounds on carbon nanotubes.
    Deng S; Zhang Q; Nie Y; Wei H; Wang B; Huang J; Yu G; Xing B
    Environ Pollut; 2012 Sep; 168():138-44. PubMed ID: 22610037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Cooperative adsorption of 1-naphthol and 1-naphthylamine onto hyper-crosslinked polymeric adsorbents].
    Zhang WM; Chen JL; Zhang QX; Pan BC; Lu JD
    Huan Jing Ke Xue; 2006 Apr; 27(4):727-31. PubMed ID: 16767996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.