These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 22341828)
1. Rapid determination of pork sensory quality using Raman spectroscopy. Wang Q; Lonergan SM; Yu C Meat Sci; 2012 Jul; 91(3):232-9. PubMed ID: 22341828 [TBL] [Abstract][Full Text] [Related]
2. Effects of boning method and postmortem aging on meat quality characteristics of pork loin. Li C; Wu J; Zhang N; Zhang S; Liu J; Li J; Li H; Feng X; Han Y; Zhu Z; Xu X; Zhou G Anim Sci J; 2009 Oct; 80(5):591-6. PubMed ID: 20163625 [TBL] [Abstract][Full Text] [Related]
3. Development of a system for classification of pork loins for tenderness using visible and near-infrared reflectance spectroscopy. Shackelford SD; King DA; Wheeler TL J Anim Sci; 2011 Nov; 89(11):3803-8. PubMed ID: 21680788 [TBL] [Abstract][Full Text] [Related]
5. Intramuscular fat content has little influence on the eating quality of fresh pork loin chops. Rincker PJ; Killefer J; Ellis M; Brewer MS; McKeith FK J Anim Sci; 2008 Mar; 86(3):730-7. PubMed ID: 18156359 [TBL] [Abstract][Full Text] [Related]
6. Trained sensory perception of pork eating quality as affected by fresh and cooked pork quality attributes and end-point cooked temperature. Moeller SJ; Miller RK; Aldredge TL; Logan KE; Edwards KK; Zerby HN; Boggess M; Box-Steffensmeier JM; Stahl CA Meat Sci; 2010 May; 85(1):96-103. PubMed ID: 20374871 [TBL] [Abstract][Full Text] [Related]
7. On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy. Liao YT; Fan YX; Cheng F Meat Sci; 2010 Dec; 86(4):901-7. PubMed ID: 20728281 [TBL] [Abstract][Full Text] [Related]
8. Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging. Barbin DF; ElMasry G; Sun DW; Allen P Anal Chim Acta; 2012 Mar; 719():30-42. PubMed ID: 22340528 [TBL] [Abstract][Full Text] [Related]
9. Correlations of trained panel sensory values of cooked pork with fatty acid composition, muscle fiber type, and pork quality characteristics in Berkshire pigs. Jeong DW; Choi YM; Lee SH; Choe JH; Hong KC; Park HC; Kim BC Meat Sci; 2010 Nov; 86(3):607-15. PubMed ID: 20659787 [TBL] [Abstract][Full Text] [Related]
10. Effect of visual marbling on sensory properties and quality traits of pork loin. Cannata S; Engle TE; Moeller SJ; Zerby HN; Radunz AE; Green MD; Bass PD; Belk KE Meat Sci; 2010 Jul; 85(3):428-34. PubMed ID: 20416803 [TBL] [Abstract][Full Text] [Related]
11. Use of visible and near-infrared spectroscopy to predict pork longissimus lean color stability. King DA; Shackelford SD; Wheeler TL J Anim Sci; 2011 Dec; 89(12):4195-206. PubMed ID: 21821803 [TBL] [Abstract][Full Text] [Related]
12. Influence of lipid content on pork sensory quality within pH classification. Lonergan SM; Stalder KJ; Huff-Lonergan E; Knight TJ; Goodwin RN; Prusa KJ; Beitz DC J Anim Sci; 2007 Apr; 85(4):1074-9. PubMed ID: 17121979 [TBL] [Abstract][Full Text] [Related]
13. Effects of myosin heavy chain isoforms on meat quality, fatty acid composition, and sensory evaluation in Berkshire pigs. Kang YK; Choi YM; Lee SH; Choe JH; Hong KC; Kim BC Meat Sci; 2011 Dec; 89(4):384-9. PubMed ID: 21636221 [TBL] [Abstract][Full Text] [Related]
14. Prediction of total viable counts on chilled pork using an electronic nose combined with support vector machine. Wang D; Wang X; Liu T; Liu Y Meat Sci; 2012 Feb; 90(2):373-7. PubMed ID: 21871741 [TBL] [Abstract][Full Text] [Related]
15. [Rapid nondestructive detection of water content in fresh pork based on spectroscopy technique combined with support vector machine]. Zhang HY; Peng YK; Wang W; Zhao SW; Liu QQ Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Oct; 32(10):2794-8. PubMed ID: 23285889 [TBL] [Abstract][Full Text] [Related]
16. Classification and detection of testosterone propionate and nandrolone residues in duck meat using surface-enhanced Raman spectroscopy coupled with multivariate analysis. Yuan H; Liu M; Huang S; Zhao J; Tao J Poult Sci; 2021 Jan; 100(1):296-301. PubMed ID: 33357693 [TBL] [Abstract][Full Text] [Related]
17. Differentiation of animal fats from different origins: use of polymorphic features detected by Raman spectroscopy. Motoyama M; Ando M; Sasaki K; Hamaguchi HO Appl Spectrosc; 2010 Nov; 64(11):1244-50. PubMed ID: 21073793 [TBL] [Abstract][Full Text] [Related]
18. Revealing covariance structures in fourier transform infrared and Raman microspectroscopy spectra: a study on pork muscle fiber tissue subjected to different processing parameters. Böcker U; Ofstad R; Wu Z; Bertram HC; Sockalingum GD; Manfait M; Egelandsdal B; Kohler A Appl Spectrosc; 2007 Oct; 61(10):1032-9. PubMed ID: 17958951 [TBL] [Abstract][Full Text] [Related]
19. Preliminary investigation of the use of Raman spectroscopy to predict meat and eating quality traits of beef loins. Fowler SM; Schmidt H; van de Ven R; Hopkins DL Meat Sci; 2018 Apr; 138():53-58. PubMed ID: 29331862 [TBL] [Abstract][Full Text] [Related]
20. A comparison of the quality of fresh and frozen pork from immunologically castrated males versus gilts, physical castrates, and entire males. Elsbernd AJ; Patience JF; Prusa KJ Meat Sci; 2016 Jan; 111():110-5. PubMed ID: 26381452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]