These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22341981)

  • 1. Effect of precursor and preparation method on manganese based activated carbon sorbents for removing H2S from hot coal gas.
    Wang J; Qiu B; Han L; Feng G; Hu Y; Chang L; Bao W
    J Hazard Mater; 2012 Apr; 213-214():184-92. PubMed ID: 22341981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.
    Liu BS; Wan ZY; Wang F; Zhan YP; Tian M; Cheung AS
    J Hazard Mater; 2014 Feb; 267():229-37. PubMed ID: 24462892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.
    Li D; Han J; Han L; Wang J; Chang L
    J Environ Sci (China); 2014 Jul; 26(7):1497-504. PubMed ID: 25079999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas.
    Zhang FM; Liu BS; Zhang Y; Guo YH; Wan ZY; Subhan F
    J Hazard Mater; 2012 Sep; 233-234():219-27. PubMed ID: 22835768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of Zn-Mn based sorbent for the high-temperature removal of H2S from coal-derived gas.
    Ko TH; Chu H; Liou YJ
    J Hazard Mater; 2007 Aug; 147(1-2):334-41. PubMed ID: 17293040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of (FexMn(2-x))O3 solid solution and high sulfur capacity properties of Mn-based/M41 sorbents for hot coal gas desulfurization.
    Zhang Y; Liu BS; Zhang FM; Zhang ZF
    J Hazard Mater; 2013 Mar; 248-249():81-8. PubMed ID: 23337625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen sulfide removal from coal gas by the metal-ferrite sorbents made from the heavy metal wastewater sludge.
    Tseng TK; Chang HC; Chu H; Chen HT
    J Hazard Mater; 2008 Dec; 160(2-3):482-8. PubMed ID: 18440697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas.
    Ko TH; Chu H; Lin HP; Peng CY
    J Hazard Mater; 2006 Aug; 136(3):776-83. PubMed ID: 16469434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of coal gas desulfurization by iron oxide sorbents.
    Lin YH; Chen YC; Chu H
    Chemosphere; 2015 Feb; 121():62-7. PubMed ID: 25434261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High temperature removal of hydrogen sulfide using an N-150 sorbent.
    Ko TH; Chu H; Chaung LK; Tseng TK
    J Hazard Mater; 2004 Oct; 114(1-3):145-52. PubMed ID: 15511585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensionally ordered macroporous iron oxide for removal of H2S at medium temperatures.
    Fan HL; Sun T; Zhao YP; Shangguan J; Lin JY
    Environ Sci Technol; 2013 May; 47(9):4859-65. PubMed ID: 23528010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sorption of hydrogen sulfide from hot syngas by metal oxides over supports.
    Ko TH; Chu H; Chaung LK
    Chemosphere; 2005 Jan; 58(4):467-74. PubMed ID: 15620738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery.
    Xie J; Qu Z; Yan N; Yang S; Chen W; Hu L; Huang W; Liu P
    J Hazard Mater; 2013 Oct; 261():206-13. PubMed ID: 23933289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MnOx/Graphene for the Catalytic Oxidation and Adsorption of Elemental Mercury.
    Xu H; Qu Z; Zong C; Huang W; Quan F; Yan N
    Environ Sci Technol; 2015 Jun; 49(11):6823-30. PubMed ID: 25922870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sn-Mn binary metal oxides as non-carbon sorbent for mercury removal in a wide-temperature window.
    Xie J; Xu H; Qu Z; Huang W; Chen W; Ma Y; Zhao S; Liu P; Yan N
    J Colloid Interface Sci; 2014 Aug; 428():121-7. PubMed ID: 24910043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of impregnation sequence of Pd/Ce/γ-Al
    Huo Q; Yue C; Wang Y; Han L; Wang J; Chen S; Bao W; Chang L; Xie K
    Chemosphere; 2020 Jun; 249():126164. PubMed ID: 32065997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.
    Rodríguez-Pérez J; López-Antón MA; Díaz-Somoano M; García R; Martínez-Tarazona MR
    J Hazard Mater; 2013 Sep; 260():869-77. PubMed ID: 23876255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regenerable Fe-Mn-ZnO/SiO2 sorbents for room temperature removal of H2S from fuel reformates: performance, active sites, Operando studies.
    Dhage P; Samokhvalov A; Repala D; Duin EC; Tatarchuk BJ
    Phys Chem Chem Phys; 2011 Feb; 13(6):2179-87. PubMed ID: 21132188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-temperature selective catalytic reduction of NO with NH₃ over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route.
    Fang C; Zhang D; Cai S; Zhang L; Huang L; Li H; Maitarad P; Shi L; Gao R; Zhang J
    Nanoscale; 2013 Oct; 5(19):9199-207. PubMed ID: 23928911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the SO(2) and NH(3) gas adsorption properties of CuO/ZnO/Mn(3)O(4) and CuO/ZnO/NiO ternary impregnated activated carbon using combinatorial materials science methods.
    Romero JV; Smith JW; Sullivan BM; Macdonald L; Croll LM; Dahn JR
    ACS Comb Sci; 2013 Feb; 15(2):101-10. PubMed ID: 23286549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.