These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 22342317)
1. The effects of acclimation and rates of temperature change on critical thermal limits in Tenebrio molitor (Tenebrionidae) and Cyrtobagous salviniae (Curculionidae). Allen JL; Clusella-Trullas S; Chown SL J Insect Physiol; 2012 May; 58(5):669-78. PubMed ID: 22342317 [TBL] [Abstract][Full Text] [Related]
2. Oxygen limitation and thermal tolerance in two terrestrial arthropod species. Stevens MM; Jackson S; Bester SA; Terblanche JS; Chown SL J Exp Biol; 2010 Jul; 213(Pt 13):2209-18. PubMed ID: 20543119 [TBL] [Abstract][Full Text] [Related]
3. Differences in critical thermal maxima and mortality across life stages of the mealworm beetle Tenebrio molitor. Vorhees AS; Bradley TJ J Exp Biol; 2012 Jul; 215(Pt 13):2319-26. PubMed ID: 22675193 [TBL] [Abstract][Full Text] [Related]
4. Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species. Slabber S; Worland MR; Leinaas HP; Chown SL J Insect Physiol; 2007 Feb; 53(2):113-25. PubMed ID: 17222862 [TBL] [Abstract][Full Text] [Related]
5. Acclimation of Anabas testudineus (Bloch) to three test temperatures influences thermal tolerance and oxygen consumption. Sarma K; Pal AK; Ayyappan S; Das T; Manush SM; Debnath D; Baruah K Fish Physiol Biochem; 2010 Mar; 36(1):85-90. PubMed ID: 19082752 [TBL] [Abstract][Full Text] [Related]
6. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900 [TBL] [Abstract][Full Text] [Related]
7. Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile. Jumbam KR; Jackson S; Terblanche JS; McGeoch MA; Chown SL J Insect Physiol; 2008 Jun; 54(6):1008-14. PubMed ID: 18534612 [TBL] [Abstract][Full Text] [Related]
8. The onset temperature of the heat-shock response and whole-organism thermal tolerance are tightly correlated in both laboratory-acclimated and field-acclimatized tidepool sculpins (Oligocottus maculosus). Fangue NA; Osborne EJ; Todgham AE; Schulte PM Physiol Biochem Zool; 2011; 84(4):341-52. PubMed ID: 21743248 [TBL] [Abstract][Full Text] [Related]
10. The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae). Terblanche JS; Sinclair BJ; Jaco Klok C; McFarlane ML; Chown SL J Insect Physiol; 2005 Sep; 51(9):1013-23. PubMed ID: 15955537 [TBL] [Abstract][Full Text] [Related]
11. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). Lachenicht MW; Clusella-Trullas S; Boardman L; Le Roux C; Terblanche JS J Insect Physiol; 2010 Jul; 56(7):822-30. PubMed ID: 20197070 [TBL] [Abstract][Full Text] [Related]
12. Variations of the antioxidant system during development of the cold-tolerant beetle, Tenebrio molitor. Gulevsky AK; Relina LI; Grishchenkova YA Cryo Letters; 2006; 27(5):283-90. PubMed ID: 17256059 [TBL] [Abstract][Full Text] [Related]
13. Effect of acclimation on heat-escape temperatures of two aphid species: Implications for estimating behavioral response of insects to climate warming. Ma G; Ma CS J Insect Physiol; 2012 Mar; 58(3):303-9. PubMed ID: 21939662 [TBL] [Abstract][Full Text] [Related]
14. Repeated Cold Exposure Effects on Mortality and Feeding Activity of the Salvinia Weevil, Cyrtobagous salviniae (Coleoptera: Curculionidae). Obeysekara PT; Knutson A; Mukherjee A; Heinz KM Environ Entomol; 2015 Dec; 44(6):1590-8. PubMed ID: 26314025 [TBL] [Abstract][Full Text] [Related]
15. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation. Terblanche JS; Clusella-Trullas S; Chown SL J Exp Biol; 2010 Sep; 213(Pt 17):2940-9. PubMed ID: 20709922 [TBL] [Abstract][Full Text] [Related]
16. Neural thermal performance in porcelain crabs, genus Petrolisthes. Miller NA; Stillman JH Physiol Biochem Zool; 2012; 85(1):29-39. PubMed ID: 22237287 [TBL] [Abstract][Full Text] [Related]
17. Time course of acclimation of critical thermal limits in two springtail species (Collembola). Kuyucu AC; Chown SL J Insect Physiol; 2021 Apr; 130():104209. PubMed ID: 33609519 [TBL] [Abstract][Full Text] [Related]
18. Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions. Kraffe E; Marty Y; Guderley H J Exp Biol; 2007 Jan; 210(Pt 1):149-65. PubMed ID: 17170158 [TBL] [Abstract][Full Text] [Related]
19. Arrhenius relationships from the molecule and cell to the clinic. Dewey WC Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695 [TBL] [Abstract][Full Text] [Related]
20. Acclimation to high ambient temperature in Large White and Caribbean Creole growing pigs. Renaudeau D; Huc E; Noblet J J Anim Sci; 2007 Mar; 85(3):779-90. PubMed ID: 17085727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]