These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 22342698)
1. A practicable detection system for genetically modified rice by SERS-barcoded nanosensors. Chen K; Han H; Luo Z; Wang Y; Wang X Biosens Bioelectron; 2012 Apr; 34(1):118-24. PubMed ID: 22342698 [TBL] [Abstract][Full Text] [Related]
2. Target triggered self-assembly of Au nanoparticles for amplified detection of Bacillus thuringiensis transgenic sequence using SERS. Chen K; Wu L; Jiang X; Lu Z; Han H Biosens Bioelectron; 2014 Dec; 62():196-200. PubMed ID: 24999997 [TBL] [Abstract][Full Text] [Related]
3. Ultrasensitive SERS detection of Bacillus thuringiensis special gene based on Au@Ag NRs and magnetic beads. Wu L; Xiao X; Chen K; Yin W; Li Q; Wang P; Lu Z; Ma J; Han H Biosens Bioelectron; 2017 Jun; 92():321-327. PubMed ID: 27839730 [TBL] [Abstract][Full Text] [Related]
4. A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering. Guven B; Boyacı İH; Tamer U; Çalık P Analyst; 2012 Jan; 137(1):202-8. PubMed ID: 22049365 [TBL] [Abstract][Full Text] [Related]
5. Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer. Chen JW; Liu XP; Feng KJ; Liang Y; Jiang JH; Shen GL; Yu RQ Biosens Bioelectron; 2008 Sep; 24(1):66-71. PubMed ID: 18436440 [TBL] [Abstract][Full Text] [Related]
6. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering. Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526 [TBL] [Abstract][Full Text] [Related]
7. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Feng S; Chen R; Lin J; Pan J; Chen G; Li Y; Cheng M; Huang Z; Chen J; Zeng H Biosens Bioelectron; 2010 Jul; 25(11):2414-9. PubMed ID: 20427174 [TBL] [Abstract][Full Text] [Related]
8. Validation of a rice specific gene, sucrose phosphate synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. Ding J; Jia J; Yang L; Wen H; Zhang C; Liu W; Zhang D J Agric Food Chem; 2004 Jun; 52(11):3372-7. PubMed ID: 15161200 [TBL] [Abstract][Full Text] [Related]
9. SERS-based direct and sandwich assay methods for mir-21 detection. Guven B; Dudak FC; Boyaci IH; Tamer U; Ozsoz M Analyst; 2014 Mar; 139(5):1141-7. PubMed ID: 24418951 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of real-time PCR detection methods for detecting rice products contaminated by rice genetically modified with a CpTI-KDEL-T-nos transgenic construct. Nakamura K; Akiyama H; Kawano N; Kobayashi T; Yoshimatsu K; Mano J; Kitta K; Ohmori K; Noguchi A; Kondo K; Teshima R Food Chem; 2013 Dec; 141(3):2618-24. PubMed ID: 23871003 [TBL] [Abstract][Full Text] [Related]
11. Decaplex and real-time PCR based detection of MON531 and MON15985 Bt cotton events. Randhawa GJ; Chhabra R; Singh M J Agric Food Chem; 2010 Sep; 58(18):9875-81. PubMed ID: 20687600 [TBL] [Abstract][Full Text] [Related]
12. Minimally invasive surface-enhanced Raman scattering detection with depth profiles based on a surface-enhanced Raman scattering-active acupuncture needle. Dong J; Chen Q; Rong C; Li D; Rao Y Anal Chem; 2011 Aug; 83(16):6191-5. PubMed ID: 21728307 [TBL] [Abstract][Full Text] [Related]
13. Streptococcus suis II immunoassay based on thorny gold nanoparticles and surface enhanced Raman scattering. Chen K; Han H; Luo Z Analyst; 2012 Mar; 137(5):1259-64. PubMed ID: 22282767 [TBL] [Abstract][Full Text] [Related]
14. Surface-enhanced Raman scattering detection of DNA derived from the west nile virus genome using magnetic capture of Raman-active gold nanoparticles. Zhang H; Harpster MH; Park HJ; Johnson PA; Wilson WC Anal Chem; 2011 Jan; 83(1):254-60. PubMed ID: 21121693 [TBL] [Abstract][Full Text] [Related]
15. Selective and sensitive detection of intracellular O2(•-) using Au NPs/cytochrome c as SERS nanosensors. Qu LL; Li DW; Qin LX; Mu J; Fossey JS; Long YT Anal Chem; 2013 Oct; 85(20):9549-55. PubMed ID: 24047198 [TBL] [Abstract][Full Text] [Related]
16. Safety assessment of transgenic Bacillus thuringiensis rice T1c-19 in Sprague-Dawley rats from metabonomics and bacterial profile perspectives. Cao S; He X; Xu W; Luo Y; Yuan Y; Liu P; Cao B; Shi H; Huang K IUBMB Life; 2012 Mar; 64(3):242-50. PubMed ID: 22215564 [TBL] [Abstract][Full Text] [Related]
17. Surface-enhanced Raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles. Zhang H; Harpster MH; Wilson WC; Johnson PA Langmuir; 2012 Feb; 28(8):4030-7. PubMed ID: 22276995 [TBL] [Abstract][Full Text] [Related]
18. SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor. David C; Guillot N; Shen H; Toury T; de la Chapelle ML Nanotechnology; 2010 Nov; 21(47):475501. PubMed ID: 21030778 [TBL] [Abstract][Full Text] [Related]
19. SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Wang Y; Wei H; Li B; Ren W; Guo S; Dong S; Wang E Chem Commun (Camb); 2007 Dec; (48):5220-2. PubMed ID: 18060148 [TBL] [Abstract][Full Text] [Related]
20. Ultrasensitive electrochemical detection of Bacillus thuringiensis transgenic sequence based on in situ Ag nanoparticles aggregates induced by biotin-streptavidin system. Jiang X; Chen K; Han H Biosens Bioelectron; 2011 Oct; 28(1):464-8. PubMed ID: 21821408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]