These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 22342801)
1. Physiological denoising of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS). Frederick Bd; Nickerson LD; Tong Y Neuroimage; 2012 Apr; 60(3):1913-23. PubMed ID: 22342801 [TBL] [Abstract][Full Text] [Related]
2. Comparison of peripheral near-infrared spectroscopy low-frequency oscillations to other denoising methods in resting state functional MRI with ultrahigh temporal resolution. Hocke LM; Tong Y; Lindsey KP; de B Frederick B Magn Reson Med; 2016 Dec; 76(6):1697-1707. PubMed ID: 26854203 [TBL] [Abstract][Full Text] [Related]
3. Concurrent fNIRS and fMRI processing allows independent visualization of the propagation of pressure waves and bulk blood flow in the cerebral vasculature. Tong Y; Frederick Bd Neuroimage; 2012 Jul; 61(4):1419-27. PubMed ID: 22440649 [TBL] [Abstract][Full Text] [Related]
4. An improved method for mapping cerebrovascular reserve using concurrent fMRI and near-infrared spectroscopy with Regressor Interpolation at Progressive Time Delays (RIPTiDe). Tong Y; Bergethon PR; Frederick BD Neuroimage; 2011 Jun; 56(4):2047-57. PubMed ID: 21459147 [TBL] [Abstract][Full Text] [Related]
5. Partitioning of physiological noise signals in the brain with concurrent near-infrared spectroscopy and fMRI. Tong Y; Lindsey KP; deB Frederick B J Cereb Blood Flow Metab; 2011 Dec; 31(12):2352-62. PubMed ID: 21811288 [TBL] [Abstract][Full Text] [Related]
6. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. Shmueli K; van Gelderen P; de Zwart JA; Horovitz SG; Fukunaga M; Jansma JM; Duyn JH Neuroimage; 2007 Nov; 38(2):306-20. PubMed ID: 17869543 [TBL] [Abstract][Full Text] [Related]
7. The utility of near-infrared spectroscopy in the regression of low-frequency physiological noise from functional magnetic resonance imaging data. Cooper RJ; Gagnon L; Goldenholz DM; Boas DA; Greve DN Neuroimage; 2012 Feb; 59(4):3128-38. PubMed ID: 22119653 [TBL] [Abstract][Full Text] [Related]
8. PHYCAA: data-driven measurement and removal of physiological noise in BOLD fMRI. Churchill NW; Yourganov G; Spring R; Rasmussen PM; Lee W; Ween JE; Strother SC Neuroimage; 2012 Jan; 59(2):1299-314. PubMed ID: 21871573 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous quantitative assessment of cerebral physiology using respiratory-calibrated MRI and near-infrared spectroscopy in healthy adults. Alderliesten T; De Vis JB; Lemmers PM; van Bel F; Benders MJ; Hendrikse J; Petersen ET Neuroimage; 2014 Jan; 85 Pt 1():255-63. PubMed ID: 23859925 [TBL] [Abstract][Full Text] [Related]
10. Phase vs. magnitude information in functional magnetic resonance imaging time series: toward understanding the noise. Petridou N; Schäfer A; Gowland P; Bowtell R Magn Reson Imaging; 2009 Oct; 27(8):1046-57. PubMed ID: 19369024 [TBL] [Abstract][Full Text] [Related]
11. A kernel machine-based fMRI physiological noise removal method. Song X; Chen NK; Gaur P Magn Reson Imaging; 2014 Feb; 32(2):150-62. PubMed ID: 24321306 [TBL] [Abstract][Full Text] [Related]
12. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI. Kundu P; Inati SJ; Evans JW; Luh WM; Bandettini PA Neuroimage; 2012 Apr; 60(3):1759-70. PubMed ID: 22209809 [TBL] [Abstract][Full Text] [Related]
13. Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data. Bright MG; Murphy K Neuroimage; 2013 Jan; 64(6):526-37. PubMed ID: 23006803 [TBL] [Abstract][Full Text] [Related]
14. Physiological noise correction using ECG-derived respiratory signals for enhanced mapping of spontaneous neuronal activity with simultaneous EEG-fMRI. Abreu R; Nunes S; Leal A; Figueiredo P Neuroimage; 2017 Jul; 154():115-127. PubMed ID: 27530551 [TBL] [Abstract][Full Text] [Related]
15. Impact of physiological noise correction on detecting blood oxygenation level-dependent contrast in the breast. Wallace TE; Manavaki R; Graves MJ; Patterson AJ; Gilbert FJ Phys Med Biol; 2017 Jan; 62(1):127-145. PubMed ID: 27973353 [TBL] [Abstract][Full Text] [Related]
16. Integration of motion correction and physiological noise regression in fMRI. Jones TB; Bandettini PA; Birn RM Neuroimage; 2008 Aug; 42(2):582-90. PubMed ID: 18583155 [TBL] [Abstract][Full Text] [Related]
17. Making the most of fMRI at 7 T by suppressing spontaneous signal fluctuations. Bianciardi M; van Gelderen P; Duyn JH; Fukunaga M; de Zwart JA Neuroimage; 2009 Jan; 44(2):448-54. PubMed ID: 18835582 [TBL] [Abstract][Full Text] [Related]
18. A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task. Sato H; Yahata N; Funane T; Takizawa R; Katura T; Atsumori H; Nishimura Y; Kinoshita A; Kiguchi M; Koizumi H; Fukuda M; Kasai K Neuroimage; 2013 Dec; 83():158-73. PubMed ID: 23792984 [TBL] [Abstract][Full Text] [Related]
19. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Chang C; Glover GH Neuroimage; 2009 Oct; 47(4):1448-59. PubMed ID: 19446646 [TBL] [Abstract][Full Text] [Related]
20. A NIRS-fMRI study of resting state network. Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]