BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22342886)

  • 1. Enthalpy-entropy compensation and cooperativity as thermodynamic epiphenomena of structural flexibility in ligand-receptor interactions.
    Ferrante A; Gorski J
    J Mol Biol; 2012 Apr; 417(5):454-67. PubMed ID: 22342886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the thermodynamics of binding of an SH3 domain to proline-rich peptides using a chimeric fusion protein.
    Candel AM; van Nuland NA; Martin-Sierra FM; Martinez JC; Conejero-Lara F
    J Mol Biol; 2008 Mar; 377(1):117-35. PubMed ID: 18234212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The high-resolution NMR structure of the R21A Spc-SH3:P41 complex: understanding the determinants of binding affinity by comparison with Abl-SH3.
    Casares S; Ab E; Eshuis H; Lopez-Mayorga O; van Nuland NA; Conejero-Lara F
    BMC Struct Biol; 2007 Apr; 7():22. PubMed ID: 17407569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraining binding hot spots: NMR and molecular dynamics simulations provide a structural explanation for enthalpy-entropy compensation in SH2-ligand binding.
    Ward JM; Gorenstein NM; Tian J; Martin SF; Post CB
    J Am Chem Soc; 2010 Aug; 132(32):11058-70. PubMed ID: 20698672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational dynamics and thermodynamics of protein-ligand binding studied by NMR relaxation.
    Akke M
    Biochem Soc Trans; 2012 Apr; 40(2):419-23. PubMed ID: 22435823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand Binding Thermodynamics in Drug Discovery: Still a Hot Tip?
    Geschwindner S; Ulander J; Johansson P
    J Med Chem; 2015 Aug; 58(16):6321-35. PubMed ID: 25915439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of fusion peptide-membrane interactions.
    Li Y; Han X; Tamm LK
    Biochemistry; 2003 Jun; 42(23):7245-51. PubMed ID: 12795621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the key mutation in the selective binding of avian and human influenza hemagglutinin to sialosides revealed by quantum-mechanical calculations.
    Sawada T; Fedorov DG; Kitaura K
    J Am Chem Soc; 2010 Dec; 132(47):16862-72. PubMed ID: 21049953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Configurational entropy and cooperativity between ligand binding and dimerization in glycopeptide antibiotics.
    Jusuf S; Loll PJ; Axelsen PH
    J Am Chem Soc; 2003 Apr; 125(13):3988-94. PubMed ID: 12656635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting the thermodynamics and cooperativity of ligand binding in cytochrome P450eryF.
    Muralidhara BK; Negi SS; Halpert JR
    J Am Chem Soc; 2007 Feb; 129(7):2015-24. PubMed ID: 17256854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3.
    Diehl C; Engström O; Delaine T; Håkansson M; Genheden S; Modig K; Leffler H; Ryde U; Nilsson UJ; Akke M
    J Am Chem Soc; 2010 Oct; 132(41):14577-89. PubMed ID: 20873837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An airborne transmissible avian influenza H5 hemagglutinin seen at the atomic level.
    Zhang W; Shi Y; Lu X; Shu Y; Qi J; Gao GF
    Science; 2013 Jun; 340(6139):1463-7. PubMed ID: 23641058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinant of receptor-preference switch in influenza hemagglutinin.
    Ni F; Kondrashkina E; Wang Q
    Virology; 2018 Jan; 513():98-107. PubMed ID: 29055255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity.
    Das P; Li J; Royyuru AK; Zhou R
    J Comput Chem; 2009 Aug; 30(11):1654-63. PubMed ID: 19399777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PDBcal: a comprehensive dataset for receptor-ligand interactions with three-dimensional structures and binding thermodynamics from isothermal titration calorimetry.
    Li L; Dantzer JJ; Nowacki J; O'Callaghan BJ; Meroueh SO
    Chem Biol Drug Des; 2008 Jun; 71(6):529-32. PubMed ID: 18482338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic consequences of stapling side-chains on a peptide ligand using a lactam-bridge: A theoretical study on anti-angiogenic peptides targeting VEGF.
    Kalathingal M; Rhee YM
    Proteins; 2024 Aug; 92(8):959-974. PubMed ID: 38602129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extent of enthalpy-entropy compensation in protein-ligand interactions.
    Olsson TS; Ladbury JE; Pitt WR; Williams MA
    Protein Sci; 2011 Sep; 20(9):1607-18. PubMed ID: 21739503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic mutation and thermodynamic analysis of central tyrosine pairs in polyspecific NKG2D receptor interactions.
    Culpepper DJ; Maddox MK; Caldwell AB; McFarland BJ
    Mol Immunol; 2011 Jan; 48(4):516-23. PubMed ID: 21074271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into Modeling Approaches in Chemistry: Assessing Ligand-Protein Binding Thermodynamics Based on Rigid-Flexible Model Molecules.
    Komarov IV; Bugrov VA; Cherednychenko A; Grygorenko OO
    Chem Rec; 2024 Feb; 24(2):e202300276. PubMed ID: 37847887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and ITC Characterization of Peptide-Protein Binding: Thermodynamic Consequences of Cyclization Constraints, a Case Study on Vascular Endothelial Growth Factor Ligands.
    Gaucher JF; Reille-Seroussi M; Broussy S
    Chemistry; 2022 Aug; 28(48):e202200465. PubMed ID: 35665969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.