BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 22342926)

  • 1. Video analysis of osmotic cell response during cryopreservation.
    Spindler R; Rosenhahn B; Hofmann N; Glasmacher B
    Cryobiology; 2012 Jun; 64(3):250-60. PubMed ID: 22342926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimethyl sulfoxide and ethylene glycol promote membrane phase change during cryopreservation.
    Spindler R; Wolkers WF; Glasmacher B
    Cryo Letters; 2011; 32(2):148-57. PubMed ID: 21766144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic parameter optimization of a Me(2)SO- and serum-free cryopreservation protocol for human mesenchymal stem cells.
    Freimark D; Sehl C; Weber C; Hudel K; Czermak P; Hofmann N; Spindler R; Glasmacher B
    Cryobiology; 2011 Oct; 63(2):67-75. PubMed ID: 21620818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures.
    Wang L; Liu J; Zhou GB; Hou YP; Li JJ; Zhu SE
    Biol Reprod; 2011 Nov; 85(5):884-94. PubMed ID: 21697515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chimpanzee (Pan troglodytes) spermatozoa osmotic tolerance and cryoprotectant permeability characteristics.
    Agca Y; Liu J; Mullen S; Johnson-Ward J; Gould K; Chan A; Critser J
    J Androl; 2005; 26(4):470-7. PubMed ID: 15955885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmotic tolerance and membrane permeability characteristics of rhesus monkey (Macaca mulatta) spermatozoa.
    Agca Y; Mullen S; Liu J; Johnson-Ward J; Gould K; Chan A; Critser J
    Cryobiology; 2005 Aug; 51(1):1-14. PubMed ID: 15922321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic tolerance limits and effects of cryoprotectants on the motility, plasma membrane integrity and acrosomal integrity of rat sperm.
    Si W; Benson JD; Men H; Critser JK
    Cryobiology; 2006 Dec; 53(3):336-48. PubMed ID: 17084388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic and cryoprotectant permeation characteristics of islet cells isolated from the newborn pig pancreas.
    Fedorow C; McGann LE; Korbutt GS; Rayat GR; Rajotte RV; Lakey JR
    Cell Transplant; 2001; 10(7):651-9. PubMed ID: 11714201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freezing response and optimal cooling rates for cryopreserving sperm cells of striped bass, Morone saxatilis.
    Thirumala S; Campbell WT; Vicknair MR; Tiersch TR; Devireddy RV
    Theriogenology; 2006 Sep; 66(4):964-73. PubMed ID: 16574210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the impacts of osmotic and oxidative stress on common carp (Cyprinus carpio, L.) sperm caused by cryopreservation techniques.
    Li P; Li ZH; Dzyuba B; Hulak M; Rodina M; Linhart O
    Biol Reprod; 2010 Nov; 83(5):852-8. PubMed ID: 20668258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryopreservation of platelets using trehalose: the role of membrane phase behavior during freezing.
    Gläfke C; Akhoondi M; Oldenhof H; Sieme H; Wolkers WF
    Biotechnol Prog; 2012; 28(5):1347-54. PubMed ID: 22837111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Culturing with trehalose produces viable endothelial cells after cryopreservation.
    Campbell LH; Brockbank KG
    Cryobiology; 2012 Jun; 64(3):240-4. PubMed ID: 22366172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryopreservation of rabbit corneas in dimethyl sulfoxide.
    Wusteman MC; Boylan S; Pegg DE
    Invest Ophthalmol Vis Sci; 1997 Sep; 38(10):1934-43. PubMed ID: 9331257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of oocyte membrane permeability coefficients and their application to cryopreservation in a rabbit model.
    Liu J; Mullen S; Meng Q; Critser J; Dinnyes A
    Cryobiology; 2009 Oct; 59(2):127-34. PubMed ID: 19527701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation.
    Chaytor JL; Tokarew JM; Wu LK; Leclère M; Tam RY; Capicciotti CJ; Guolla L; von Moos E; Findlay CS; Allan DS; Ben RN
    Glycobiology; 2012 Jan; 22(1):123-33. PubMed ID: 21852258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of trehalose as an additive to dimethyl sulfoxide solutions on ice formation, cellular viability, and metabolism.
    Solocinski J; Osgood Q; Wang M; Connolly A; Menze MA; Chakraborty N
    Cryobiology; 2017 Apr; 75():134-143. PubMed ID: 28063960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a simple sperm cryopreservation model using a chemically defined medium and goat cauda epididymal spermatozoa.
    Kundu CN; Chakraborty J; Dutta P; Bhattacharyya D; Ghosh A; Majumder GC
    Cryobiology; 2000 Mar; 40(2):117-25. PubMed ID: 10788311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of transcriptional responses to the cryoprotectants, dimethyl sulfoxide and trehalose, which confer tolerance to freeze-thaw stress in Saccharomyces cerevisiae.
    Momose Y; Matsumoto R; Maruyama A; Yamaoka M
    Cryobiology; 2010 Jun; 60(3):245-61. PubMed ID: 20067782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function.
    Benson JD; Kearsley AJ; Higgins AZ
    Cryobiology; 2012 Jun; 64(3):144-51. PubMed ID: 22248796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of cryobiological responses in TF-1 cells using interrupted freezing procedures.
    Ross-Rodriguez LU; Elliott JA; McGann LE
    Cryobiology; 2010 Apr; 60(2):106-16. PubMed ID: 19766619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.