BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 22343003)

  • 1. Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells.
    Wang LS; Du C; Chung JE; Kurisawa M
    Acta Biomater; 2012 May; 8(5):1826-37. PubMed ID: 22343003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell.
    Wang LS; Boulaire J; Chan PP; Chung JE; Kurisawa M
    Biomaterials; 2010 Nov; 31(33):8608-16. PubMed ID: 20709390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture.
    Wang LS; Chung JE; Chan PP; Kurisawa M
    Biomaterials; 2010 Feb; 31(6):1148-57. PubMed ID: 19892395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties.
    Wang LS; Du C; Toh WS; Wan AC; Gao SJ; Kurisawa M
    Biomaterials; 2014 Feb; 35(7):2207-17. PubMed ID: 24333028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells.
    Lim TC; Toh WS; Wang LS; Kurisawa M; Spector M
    Biomaterials; 2012 Apr; 33(12):3446-55. PubMed ID: 22306021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate.
    Takahashi Y; Yamamoto M; Tabata Y
    Biomaterials; 2005 Jun; 26(17):3587-96. PubMed ID: 15621249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment.
    Toh WS; Lim TC; Kurisawa M; Spector M
    Biomaterials; 2012 May; 33(15):3835-45. PubMed ID: 22369963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells.
    Machado CB; Ventura JM; Lemos AF; Ferreira JM; Leite MF; Goes AM
    Biomed Mater; 2007 Jun; 2(2):124-31. PubMed ID: 18458445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell immobilization in gelatin-hydroxyphenylpropionic acid hydrogel fibers.
    Hu M; Kurisawa M; Deng R; Teo CM; Schumacher A; Thong YX; Wang L; Schumacher KM; Ying JY
    Biomaterials; 2009 Jul; 30(21):3523-31. PubMed ID: 19328545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailorable cell culture platforms from enzymatically cross-linked multifunctional poly(ethylene glycol)-based hydrogels.
    Menzies DJ; Cameron A; Munro T; Wolvetang E; Grøndahl L; Cooper-White JJ
    Biomacromolecules; 2013 Feb; 14(2):413-23. PubMed ID: 23259935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery.
    Lee F; Chung JE; Kurisawa M
    J Control Release; 2009 Mar; 134(3):186-93. PubMed ID: 19121348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering.
    Kim J; Kim IS; Cho TH; Kim HC; Yoon SJ; Choi J; Park Y; Sun K; Hwang SJ
    J Biomed Mater Res A; 2010 Dec; 95(3):673-81. PubMed ID: 20725983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling fibroblast proliferation with dimensionality-specific response by stiffness of injectable gelatin hydrogels.
    Wang LS; Chung JE; Kurisawa M
    J Biomater Sci Polym Ed; 2012; 23(14):1793-806. PubMed ID: 21943785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties and biocompatibility of in situ enzymatically cross-linked gelatin hydrogels.
    Alarake NZ; Frohberg P; Groth T; Pietzsch M
    Int J Artif Organs; 2017 May; 40(4):159-168. PubMed ID: 28315501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an in situ injectable hydrogel containing hyaluronic acid for neural regeneration.
    Nguyen LTB; Hsu CC; Ye H; Cui Z
    Biomed Mater; 2020 Jul; 15(5):055005. PubMed ID: 32324167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-lineage differentiation of hMSCs encapsulated in thermo-reversible hydrogel using a co-culture system with differentiated cells.
    Park JS; Yang HN; Woo DG; Kim H; Na K; Park KH
    Biomaterials; 2010 Oct; 31(28):7275-87. PubMed ID: 20619450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers.
    Dash R; Foston M; Ragauskas AJ
    Carbohydr Polym; 2013 Jan; 91(2):638-45. PubMed ID: 23121958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering.
    Park KH; Kim H; Moon S; Na K
    J Biosci Bioeng; 2009 Dec; 108(6):530-7. PubMed ID: 19914589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications.
    Kai D; Prabhakaran MP; Stahl B; Eblenkamp M; Wintermantel E; Ramakrishna S
    Nanotechnology; 2012 Mar; 23(9):095705. PubMed ID: 22322583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent hydrogels for embryoid body formation and osteogenic differentiation of embryonic stem cells.
    zur Nieden NI; Turgman CC; Lang X; Larsen JM; Granelli J; Hwang YJ; Lyubovitsky JG
    ACS Appl Mater Interfaces; 2015 May; 7(19):10599-605. PubMed ID: 25905907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.