BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 22343010)

  • 1. Assessing the Cr(VI) reduction efficiency of a permeable reactive barrier using Cr isotope measurements and 2D reactive transport modeling.
    Wanner C; Zink S; Eggenberger U; Mäder U
    J Contam Hydrol; 2012 Apr; 131(1-4):54-63. PubMed ID: 22343010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cr stable isotopes as indicators of Cr(VI) reduction in groundwater: a detailed time-series study of a point-source plume.
    Berna EC; Johnson TM; Makdisi RS; Basu A
    Environ Sci Technol; 2010 Feb; 44(3):1043-8. PubMed ID: 20039722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cr stable isotopes in Snake River Plain aquifer groundwater: evidence for natural reduction of dissolved Cr(VI).
    Raddatz AL; Johnson TM; McLing TL
    Environ Sci Technol; 2011 Jan; 45(2):502-7. PubMed ID: 21121656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive transport modeling of chromium isotope fractionation during Cr(VI) reduction.
    Jamieson-Hanes JH; Amos RT; Blowes DW
    Environ Sci Technol; 2012 Dec; 46(24):13311-6. PubMed ID: 23153412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness.
    Liu Y; Mou H; Chen L; Mirza ZA; Liu L
    J Hazard Mater; 2015 Nov; 298():83-90. PubMed ID: 26026959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials.
    Basu A; Johnson TM
    Environ Sci Technol; 2012 May; 46(10):5353-60. PubMed ID: 22424120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia Region, northern Italy.
    Slejko FF; Petrini R; Lutman A; Forte C; Ghezzi L
    Isotopes Environ Health Stud; 2019 Mar; 55(1):56-69. PubMed ID: 30621468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromium isotope fractionation during reduction of Cr(VI) under saturated flow conditions.
    Jamieson-Hanes JH; Gibson BD; Lindsay MB; Kim Y; Ptacek CJ; Blowes DW
    Environ Sci Technol; 2012 Jun; 46(12):6783-9. PubMed ID: 22676583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies.
    Wilkin RT; Acree SD; Ross RR; Beak DG; Lee TR
    J Contam Hydrol; 2009 Apr; 106(1-2):1-14. PubMed ID: 19167133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental life cycle assessment of permeable reactive barriers: effects of construction methods, reactive materials and groundwater constituents.
    Mak MS; Lo IM
    Environ Sci Technol; 2011 Dec; 45(23):10148-54. PubMed ID: 22035382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier.
    Wilkin RT; Su C; Ford RG; Paul CJ
    Environ Sci Technol; 2005 Jun; 39(12):4599-605. PubMed ID: 16047798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of Cr as Cr(III) from Cr(VI)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier.
    Suzuki T; Kawai K; Moribe M; Niinae M
    J Hazard Mater; 2014 Aug; 278():297-303. PubMed ID: 24981681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ remediation of Cr(VI) contaminated groundwater by ZVI-PRB and the corresponding indigenous microbial community responses: a field-scale study.
    Wang Q; Song X; Wei C; Jin P; Chen X; Tang Z; Li K; Ding X; Fu H
    Sci Total Environ; 2022 Jan; 805():150260. PubMed ID: 34537698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-objective optimization of permeable reactive barrier design for Cr(VI) removal from groundwater.
    Maamoun I; Eljamal O; Falyouna O; Eljamal R; Sugihara Y
    Ecotoxicol Environ Saf; 2020 Sep; 200():110773. PubMed ID: 32464445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experimental study on the remediation of chromium contaminated groundwater with PRB media].
    Zhu WH; Dong LF; Wang XR; Zhai YL
    Huan Jing Ke Xue; 2013 Jul; 34(7):2711-7. PubMed ID: 24028003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical depassivation for recovering Fe(0) reactivity by Cr(VI) removal with a permeable reactive barrier system.
    Lu X; Li M; Tang C; Feng C; Liu X
    J Hazard Mater; 2012 Apr; 213-214():355-60. PubMed ID: 22386999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater.
    Kazakis N; Kantiranis N; Voudouris KS; Mitrakas M; Kaprara E; Pavlou A
    Sci Total Environ; 2015 May; 514():224-38. PubMed ID: 25666283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness and longevity of a green/food waste derived compost packed column to reduce Cr(VI) contamination in groundwater.
    Piau C; Aspray TJ
    J Hazard Mater; 2011 Feb; 186(2-3):1249-53. PubMed ID: 21195546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis.
    VanStone N; Przepiora A; Vogan J; Lacrampe-Couloume G; Powers B; Perez E; Mabury S; Sherwood Lollar B
    J Contam Hydrol; 2005 Aug; 78(4):313-25. PubMed ID: 16026893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron.
    Liu T; Rao P; Lo IM
    Sci Total Environ; 2009 May; 407(10):3407-14. PubMed ID: 19232679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.