BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22343071)

  • 1. Learning image context for segmentation of the prostate in CT-guided radiotherapy.
    Li W; Liao S; Feng Q; Chen W; Shen D
    Phys Med Biol; 2012 Mar; 57(5):1283-308. PubMed ID: 22343071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pretreatment information-aided automatic segmentation for online magnetic resonance imaging-guided prostate radiotherapy.
    Yang B; Liu Y; Zhu J; Lu N; Dai J; Men K
    Med Phys; 2024 Feb; 51(2):922-932. PubMed ID: 37449545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prostate segmentation by sparse representation based classification.
    Gao Y; Liao S; Shen D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):451-8. PubMed ID: 23286162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online updating of context-aware landmark detectors for prostate localization in daily treatment CT images.
    Dai X; Gao Y; Shen D
    Med Phys; 2015 May; 42(5):2594-606. PubMed ID: 25979051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning.
    Guo Y; Gao Y; Shao Y; Price T; Oto A; Shen D
    Med Phys; 2014 Jul; 41(7):072303. PubMed ID: 24989402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparse patch based prostate segmentation in CT images.
    Liao S; Gao Y; Shen D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):385-92. PubMed ID: 23286154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic multiorgan segmentation in CT images of the male pelvis using region-specific hierarchical appearance cluster models.
    Li D; Zang P; Chai X; Cui Y; Li R; Xing L
    Med Phys; 2016 Oct; 43(10):5426. PubMed ID: 27782723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Cross-Task Representation Adaptation for Clinical Targets Co-Segmentation in CT Image-Guided Post-Prostatectomy Radiotherapy.
    Wang F; Xu X; Yang D; Chen RC; Royce TJ; Wang A; Lian J; Lian C
    IEEE Trans Med Imaging; 2023 Apr; 42(4):1046-1055. PubMed ID: 36399586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pelvic Organ Segmentation Using Distinctive Curve Guided Fully Convolutional Networks.
    He K; Cao X; Shi Y; Nie D; Gao Y; Shen D
    IEEE Trans Med Imaging; 2019 Feb; 38(2):585-595. PubMed ID: 30176583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CT prostate segmentation based on synthetic MRI-aided deep attention fully convolution network.
    Lei Y; Dong X; Tian Z; Liu Y; Tian S; Wang T; Jiang X; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X
    Med Phys; 2020 Feb; 47(2):530-540. PubMed ID: 31745995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.
    Feng Y; Kawrakow I; Olsen J; Parikh PJ; Noel C; Wooten O; Du D; Mutic S; Hu Y
    J Appl Clin Med Phys; 2016 Mar; 17(2):441-460. PubMed ID: 27074465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attention-guided multi-scale learning network for automatic prostate and tumor segmentation on MRI.
    Li Y; Wu Y; Huang M; Zhang Y; Bai Z
    Comput Biol Med; 2023 Oct; 165():107374. PubMed ID: 37611428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A statistical deformation model-based data augmentation method for volumetric medical image segmentation.
    He W; Zhang C; Dai J; Liu L; Wang T; Liu X; Jiang Y; Li N; Xiong J; Wang L; Xie Y; Liang X
    Med Image Anal; 2024 Jan; 91():102984. PubMed ID: 37837690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation.
    Wang S; He K; Nie D; Zhou S; Gao Y; Shen D
    Med Image Anal; 2019 May; 54():168-178. PubMed ID: 30928830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prostate and dominant intraprostatic lesion segmentation on PET/CT using cascaded regional-net.
    Matkovic LA; Wang T; Lei Y; Akin-Akintayo OO; Abiodun Ojo OA; Akintayo AA; Roper J; Bradley JD; Liu T; Schuster DM; Yang X
    Phys Med Biol; 2021 Dec; 66(24):. PubMed ID: 34808603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating CT Image From MRI Data Using Structured Random Forest and Auto-Context Model.
    Huynh T; Gao Y; Kang J; Wang L; Zhang P; Lian J; Shen D;
    IEEE Trans Med Imaging; 2016 Jan; 35(1):174-83. PubMed ID: 26241970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated segmentation of dental CBCT image with prior-guided sequential random forests.
    Wang L; Gao Y; Shi F; Li G; Chen KC; Tang Z; Xia JJ; Shen D
    Med Phys; 2016 Jan; 43(1):336. PubMed ID: 26745927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A probabilistic deep learning model of inter-fraction anatomical variations in radiotherapy.
    Pastor-Serrano O; Habraken S; Hoogeman M; Lathouwers D; Schaart D; Nomura Y; Xing L; Perkó Z
    Phys Med Biol; 2023 Apr; 68(8):. PubMed ID: 36958058
    [No Abstract]   [Full Text] [Related]  

  • 19. Boundary Coding Representation for Organ Segmentation in Prostate Cancer Radiotherapy.
    Wang S; Liu M; Lian J; Shen D
    IEEE Trans Med Imaging; 2021 Jan; 40(1):310-320. PubMed ID: 32956051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation and benchmarking of U-Nets on prostate segmentation tasks.
    Bhandary S; Kuhn D; Babaiee Z; Fechter T; Benndorf M; Zamboglou C; Grosu AL; Grosu R
    Comput Med Imaging Graph; 2023 Jul; 107():102241. PubMed ID: 37201475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.