BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 22343941)

  • 21. Chromatin reconstitution: development of a salt-dialysis method monitored by nano-technology.
    Hizume K; Yoshimura SH; Maruyama H; Kim J; Wada H; Takeyasu K
    Arch Histol Cytol; 2002 Dec; 65(5):405-13. PubMed ID: 12680456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. X-ray structure of a tetranucleosome and its implications for the chromatin fibre.
    Schalch T; Duda S; Sargent DF; Richmond TJ
    Nature; 2005 Jul; 436(7047):138-41. PubMed ID: 16001076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of human chromosomal unit fibers.
    Bak P; Bak AL; Zeuthen J
    Chromosoma; 1979 Aug; 73(3):301-15. PubMed ID: 510072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Revisit of Reconstituted 30-nm Nucleosome Arrays Reveals an Ensemble of Dynamic Structures.
    Zhou BR; Jiang J; Ghirlando R; Norouzi D; Sathish Yadav KN; Feng H; Wang R; Zhang P; Zhurkin V; Bai Y
    J Mol Biol; 2018 Sep; 430(18 Pt B):3093-3110. PubMed ID: 29959925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A silent revolution in chromosome biology.
    Uhlmann F
    Nat Rev Mol Cell Biol; 2014 Jul; 15(7):431. PubMed ID: 24871800
    [No Abstract]   [Full Text] [Related]  

  • 26. Conformation of replicated segments of chromosome fibres in human S-phase nucleus.
    Solovjeva L; Svetlova M; Stein G; Chagin V; Rozanov Y; Zannis-Hadjopoulos M; Price G; Tomilin N
    Chromosome Res; 1998 Dec; 6(8):595-602. PubMed ID: 10099872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Near-atomic resolution structures of interdigitated nucleosome fibres.
    Adhireksan Z; Sharma D; Lee PL; Davey CA
    Nat Commun; 2020 Sep; 11(1):4747. PubMed ID: 32958761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleosome arrays reveal the two-start organization of the chromatin fiber.
    Dorigo B; Schalch T; Kulangara A; Duda S; Schroeder RR; Richmond TJ
    Science; 2004 Nov; 306(5701):1571-3. PubMed ID: 15567867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The controversial 30 nm chromatin fibre.
    Staynov DZ
    Bioessays; 2008 Oct; 30(10):1003-9. PubMed ID: 18798528
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres.
    Fussner E; Strauss M; Djuric U; Li R; Ahmed K; Hart M; Ellis J; Bazett-Jones DP
    EMBO Rep; 2012 Nov; 13(11):992-6. PubMed ID: 22986547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human mitotic chromosome structure: what happened to the 30-nm fibre?
    Hansen JC
    EMBO J; 2012 Apr; 31(7):1621-3. PubMed ID: 22415369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cryo-ET reveals the macromolecular reorganization of
    Cai S; Chen C; Tan ZY; Huang Y; Shi J; Gan L
    Proc Natl Acad Sci U S A; 2018 Oct; 115(43):10977-10982. PubMed ID: 30297429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ultrastructural organization of prematurely condensed chromosomes.
    Gollin SM; Wray W; Hanks SK; Hittelman WN; Rao PN
    J Cell Sci Suppl; 1984; 1():203-21. PubMed ID: 6397471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure.
    Robinson PJ; Fairall L; Huynh VA; Rhodes D
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6506-11. PubMed ID: 16617109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide mapping and cryo-EM structural analyses of the overlapping tri-nucleosome composed of hexasome-hexasome-octasome moieties.
    Nishimura M; Fujii T; Tanaka H; Maehara K; Morishima K; Shimizu M; Kobayashi Y; Nozawa K; Takizawa Y; Sugiyama M; Ohkawa Y; Kurumizaka H
    Commun Biol; 2024 Jan; 7(1):61. PubMed ID: 38191828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural-functional model of the mitotic chromosome.
    Polyakov VY; Zatsepina OV; Kireev II; Prusov AN; Fais DI; Sheval EV; Koblyakova YV; Golyshev SA; Chentsov YS
    Biochemistry (Mosc); 2006 Jan; 71(1):1-9. PubMed ID: 16457612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleosome positioning and chromatin organization.
    Parmar JJ; Padinhateeri R
    Curr Opin Struct Biol; 2020 Oct; 64():111-118. PubMed ID: 32731156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei.
    Scheffer MP; Eltsov M; Frangakis AS
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16992-7. PubMed ID: 21969536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells.
    Ou HD; Phan S; Deerinck TJ; Thor A; Ellisman MH; O'Shea CC
    Science; 2017 Jul; 357(6349):. PubMed ID: 28751582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.