These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 22344064)

  • 1. The effect of short-term resistance training on hip and knee kinematics during vertical drop jumps.
    McCurdy K; Walker J; Saxe J; Woods J
    J Strength Cond Res; 2012 May; 26(5):1257-64. PubMed ID: 22344064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in lower extremity kinematics between a bilateral drop-vertical jump and a single-leg step-down.
    Earl JE; Monteiro SK; Snyder KR
    J Orthop Sports Phys Ther; 2007 May; 37(5):245-52. PubMed ID: 17549953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between selected measures of strength and hip and knee excursion during unilateral and bilateral landings in women.
    McCurdy K; Walker J; Armstrong R; Langford G
    J Strength Cond Res; 2014 Sep; 28(9):2429-36. PubMed ID: 24942172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of three jump landing tasks on kinetic and kinematic measures: implications for ACL injury research.
    Cruz A; Bell D; McGrath M; Blackburn T; Padua D; Herman D
    Res Sports Med; 2013; 21(4):330-42. PubMed ID: 24067119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task.
    Stearns KM; Powers CM
    Am J Sports Med; 2014 Mar; 42(3):602-9. PubMed ID: 24464929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing of lower extremity frontal plane motion differs between female and male athletes during a landing task.
    Joseph MF; Rahl M; Sheehan J; MacDougall B; Horn E; Denegar CR; Trojian TH; Anderson JM; Kraemer WJ
    Am J Sports Med; 2011 Jul; 39(7):1517-21. PubMed ID: 21383083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tibial plateau geometry influences lower extremity biomechanics during landing.
    Shultz SJ; Schmitz RJ
    Am J Sports Med; 2012 Sep; 40(9):2029-36. PubMed ID: 22837428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury.
    Chappell JD; Creighton RA; Giuliani C; Yu B; Garrett WE
    Am J Sports Med; 2007 Feb; 35(2):235-41. PubMed ID: 17092926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peak Lower Extremity Landing Kinematics in Dancers and Nondancers.
    Hansberger BL; Acocello S; Slater LV; Hart JM; Ambegaonkar JP
    J Athl Train; 2018 Apr; 53(4):379-385. PubMed ID: 29528687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison between back squat exercise and vertical jump kinematics: implications for determining anterior cruciate ligament injury risk.
    Wallace BJ; Kernozek TW; Mikat RP; Wright GA; Simons SZ; Wallace KL
    J Strength Cond Res; 2008 Jul; 22(4):1249-58. PubMed ID: 18545181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age and gender effects on lower extremity kinematics of youth soccer players in a stop-jump task.
    Yu B; McClure SB; Onate JA; Guskiewicz KM; Kirkendall DT; Garrett WE
    Am J Sports Med; 2005 Sep; 33(9):1356-64. PubMed ID: 16002495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of strength training on the lower extremity biomechanics of female recreational athletes during a stop-jump task.
    Herman DC; Weinhold PS; Guskiewicz KM; Garrett WE; Yu B; Padua DA
    Am J Sports Med; 2008 Apr; 36(4):733-40. PubMed ID: 18212346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of an Intervention Program on Lower Extremity Biomechanics in Stop-Jump and Side-Cutting Tasks.
    Yang C; Yao W; Garrett WE; Givens DL; Hacke J; Liu H; Yu B
    Am J Sports Med; 2018 Oct; 46(12):3014-3022. PubMed ID: 30148646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A wearable system to assess risk for anterior cruciate ligament injury during jump landing: measurements of temporal events, jump height, and sagittal plane kinematics.
    Dowling AV; Favre J; Andriacchi TP
    J Biomech Eng; 2011 Jul; 133(7):071008. PubMed ID: 21823747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative adaptations of lower limb biomechanics during unilateral and bilateral landings after different neuromuscular-based ACL injury prevention protocols.
    Brown TN; Palmieri-Smith RM; McLean SG
    J Strength Cond Res; 2014 Oct; 28(10):2859-71. PubMed ID: 24714537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of drop jumps and sport-specific sidestep cutting: implications for anterior cruciate ligament injury risk screening.
    Kristianslund E; Krosshaug T
    Am J Sports Med; 2013 Mar; 41(3):684-8. PubMed ID: 23287439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics.
    Myer GD; Ford KR; McLean SG; Hewett TE
    Am J Sports Med; 2006 Mar; 34(3):445-55. PubMed ID: 16282579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of landing biomechanics between male and female dancers and athletes, part 2: Influence of fatigue and implications for anterior cruciate ligament injury.
    Liederbach M; Kremenic IJ; Orishimo KF; Pappas E; Hagins M
    Am J Sports Med; 2014 May; 42(5):1089-95. PubMed ID: 24595401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of men's and women's strength to body mass ratio and varus/valgus knee angle during jump landings.
    Haines TL; McBride JM; Triplett NT; Skinner JW; Fairbrother KR; Kirby TJ
    J Sports Sci; 2011 Oct; 29(13):1435-42. PubMed ID: 21916796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of Knee Flexion Angle Has Patient-Specific Effects on Anterior Cruciate Ligament Injury Risk Factors During Jump Landing.
    Favre J; Clancy C; Dowling AV; Andriacchi TP
    Am J Sports Med; 2016 Jun; 44(6):1540-6. PubMed ID: 26983457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.