These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 22344124)

  • 1. In vivo optical neural recording using fiber-based surface plasmon resonance.
    Kim SA; Kim SJ; Moon H; Jun SB
    Opt Lett; 2012 Feb; 37(4):614-6. PubMed ID: 22344124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber-optic surface plasmon resonance for vapor phase analyses.
    Kim YC; Banerji S; Masson JF; Peng W; Booksh KS
    Analyst; 2005 Jun; 130(6):838-43. PubMed ID: 15912230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 1μm diameter tip fiber-based surface plasmon resonance system for single unit optical neural recording.
    Moon H; Kim SA; Jun SB; Lee J; Oh U; Kim SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():498-500. PubMed ID: 22254357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex.
    Schulz K; Sydekum E; Krueppel R; Engelbrecht CJ; Schlegel F; Schröter A; Rudin M; Helmchen F
    Nat Methods; 2012 Jun; 9(6):597-602. PubMed ID: 22561989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time monitoring of solid-phase PCR using fiber-optic SPR.
    Pollet J; Janssen KP; Knez K; Lammertyn J
    Small; 2011 Apr; 7(8):1003-6. PubMed ID: 21394905
    [No Abstract]   [Full Text] [Related]  

  • 6. Current status of optical fiber biosensor based on surface plasmon resonance.
    Zhao Y; Tong RJ; Xia F; Peng Y
    Biosens Bioelectron; 2019 Oct; 142():111505. PubMed ID: 31357154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical measurement of neural activity using surface plasmon resonance.
    Ae Kim S; Min Byun K; Lee J; Hoon Kim J; Albert Kim DG; Baac H; Shuler ML; June Kim S
    Opt Lett; 2008 May; 33(9):914-6. PubMed ID: 18451937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an optical fiber SPR sensor for living cell activation.
    Yanase Y; Araki A; Suzuki H; Tsutsui T; Kimura T; Okamoto K; Nakatani T; Hiragun T; Hide M
    Biosens Bioelectron; 2010 Jan; 25(5):1244-7. PubMed ID: 19880304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive correlation between neuronal activity and spin-echo blood oxygenation level-dependent signals in the rat somatosensory cortex evoked by short electrical stimulations at various frequencies and currents.
    Kida I; Yamamoto T
    Brain Res; 2010 Mar; 1317():116-23. PubMed ID: 20059991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined affinity and catalytic biosensor: in situ enzymatic activity monitoring of surface-bound enzymes.
    Xu F; Zhen G; Yu F; Kuennemann E; Textor M; Knoll W
    J Am Chem Soc; 2005 Sep; 127(38):13084-5. PubMed ID: 16173702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement.
    Bhatia P; Gupta BD
    Appl Opt; 2011 May; 50(14):2032-6. PubMed ID: 21556104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications.
    Wang J; Wagner F; Borton DA; Zhang J; Ozden I; Burwell RD; Nurmikko AV; van Wagenen R; Diester I; Deisseroth K
    J Neural Eng; 2012 Feb; 9(1):016001. PubMed ID: 22156042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Side-hole fiber sensor based on surface plasmon resonance.
    Wang A; Docherty A; Kuhlmey BT; Cox FM; Large MC
    Opt Lett; 2009 Dec; 34(24):3890-2. PubMed ID: 20016648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis.
    Yu X; Zhang S; Zhang Y; Ho HP; Shum P; Liu H; Liu D
    Opt Express; 2010 Aug; 18(17):17950-7. PubMed ID: 20721181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Surface Plasmon Resonance Fiber-Optic Sensor: In Situ Detection of Electroactive Biofilms.
    Yuan Y; Guo T; Qiu X; Tang J; Huang Y; Zhuang L; Zhou S; Li Z; Guan BO; Zhang X; Albert J
    Anal Chem; 2016 Aug; 88(15):7609-16. PubMed ID: 27214753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling between simultaneously recorded BOLD response and neuronal activity in the rat somatosensory cortex.
    Huttunen JK; Gröhn O; Penttonen M
    Neuroimage; 2008 Jan; 39(2):775-85. PubMed ID: 17964186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of surface plasmon resonance coupled with mass spectrometry reveals an interaction between the voltage-gated sodium channel type X alpha-subunit and caveolin-1.
    Ohman E; Nilsson A; Madeira A; Sjögren B; Andrén PE; Svenningsson P
    J Proteome Res; 2008 Dec; 7(12):5333-8. PubMed ID: 19367709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles.
    Hsieh BY; Chang YF; Ng MY; Liu WC; Lin CH; Wu HT; Chou C
    Anal Chem; 2007 May; 79(9):3487-93. PubMed ID: 17378542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal mapping of rat whisker barrels with fast scattered light signals.
    Rector DM; Carter KM; Volegov PL; George JS
    Neuroimage; 2005 Jun; 26(2):619-27. PubMed ID: 15907319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical biosensors.
    Damborský P; Švitel J; Katrlík J
    Essays Biochem; 2016 Jun; 60(1):91-100. PubMed ID: 27365039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.