BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2234414)

  • 1. Selective uptake of C-fragment of tetanus toxin by sympathetic preganglionic nerve terminals.
    Meckler RL; Baron R; McLachlan EM
    Neuroscience; 1990; 36(3):823-9. PubMed ID: 2234414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrograde, trans-synaptic and transneuronal transport of fragment C of tetanus toxin by sympathetic preganglionic neurons.
    Cabot JB; Mennone A; Bogan N; Carroll J; Evinger C; Erichsen JT
    Neuroscience; 1991; 40(3):805-23. PubMed ID: 1712087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective binding, uptake, and retrograde transport of tetanus toxin by nerve terminals in the rat iris. An electron microscope study using colloidal gold as a tracer.
    Schwab ME; Thoenen H
    J Cell Biol; 1978 Apr; 77(1):1-13. PubMed ID: 659508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons.
    Stöckel K; Schwab M; Thoenen H
    Brain Res; 1975 Nov; 99(1):1-16. PubMed ID: 52914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective trans-synaptic migration of tetanus toxin after retrograde axonal transport in peripheral sympathetic nerves: a comparison with nerve growth factor.
    Schwab M; Thoenen H
    Brain Res; 1977 Feb; 122(3):459-74. PubMed ID: 66083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport.
    Schwab ME; Suda K; Thoenen H
    J Cell Biol; 1979 Sep; 82(3):798-810. PubMed ID: 92475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural localization of the binding fragment of tetanus toxin in putative gamma-aminobutyric acidergic terminals in the intermediolateral cell column: a potential basis for sympathetic dysfunction in generalized tetanus.
    Ligorio MA; Akmentin W; Gallery F; Cabot JB
    J Comp Neurol; 2000 Apr; 419(4):471-84. PubMed ID: 10742716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of renal sympathetic preganglionic neurons in hamsters using transsynaptic transport of herpes simplex type 1 virus.
    Dehal NS; Dekaban GA; Krassioukov AV; Picard FJ; Weaver LC
    Neuroscience; 1993 Sep; 56(1):227-40. PubMed ID: 7694186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry.
    Kummer W; Fischer A; Kurkowski R; Heym C
    Neuroscience; 1992 Aug; 49(3):715-37. PubMed ID: 1380140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impulse conduction in sympathetic nerve terminals in the guinea-pig vas deferens and the role of the pelvic ganglia.
    Brock JA; Cunnane TC
    Neuroscience; 1992; 47(1):185-96. PubMed ID: 1579207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical coding of sympathetic neurons controlling the tarsal muscle of the rat.
    Chanthaphavong RS; Murphy SM; Anderson CR
    Auton Neurosci; 2003 May; 105(2):77-89. PubMed ID: 12798204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of nitric oxide synthase-containing autonomic preganglionic terminals in the rat.
    Anderson CR; Edwards SL; Furness JB; Bredt DS; Snyder SH
    Brain Res; 1993 Jun; 614(1-2):78-85. PubMed ID: 7688648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal sympathetic preganglionic neurons demonstrated by herpes simplex virus transneuronal labelling in the rabbit: close apposition of neuropeptide Y-immunoreactive terminals.
    Li YW; Ding ZQ; Wesselingh SL; Blessing WW
    Neuroscience; 1993 Apr; 53(4):1143-52. PubMed ID: 8389428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retrograde axonal transport of specific macromolecules as a tool for characterizing nerve terminal membranes.
    Dumas M; Schwab ME; Thoenen H
    J Neurobiol; 1979 Mar; 10(2):179-97. PubMed ID: 512657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Death of intermediolateral spinal cord neurons follows selective, complement-mediated destruction of peripheral preganglionic sympathetic terminals by acetylcholinesterase antibodies.
    Brimijoin S; Moser V; Hammond P; Oka N; Lennon VA
    Neuroscience; 1993 May; 54(1):201-23. PubMed ID: 8515842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of substance P and leucine enkephalin in the nerve terminals of the guinea pig paracervical ganglion.
    Mitchell BS; Stauber VV
    Histochem J; 1993 Feb; 25(2):144-9. PubMed ID: 7682207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in immunoreactivity for growth associated protein-43 suggest reorganization of synapses on spinal sympathetic neurons after cord transection.
    Weaver LC; Cassam AK; Krassioukov AV; Llewellyn-Smith IJ
    Neuroscience; 1997 Nov; 81(2):535-51. PubMed ID: 9300440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord.
    Furness JB; Cho HJ; Hunne B; Hirayama H; Callaghan BP; Lomax AE; Brock JA
    Cell Tissue Res; 2012 Jun; 348(3):397-405. PubMed ID: 22538519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calbindin D28K-immunoreactivity identifies distinct subpopulations of sympathetic pre- and postganglionic neurons in the rat.
    Grkovic I; Anderson CR
    J Comp Neurol; 1997 Sep; 386(2):245-59. PubMed ID: 9295150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wide distribution and subcellular localization of histamine in sympathetic nervous systems of different species.
    Hu J; Chen T; Li M; He G; Meng J; Ma X; Wu Y; Jia M; Luo X
    Neurosci Res; 2007 Oct; 59(2):231-6. PubMed ID: 17723248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.