These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 22344152)
1. Metallic nanofilm half-wave plate based on magnetic plasmon resonance. Zhu ZH; Guo CC; Liu K; Ye WM; Yuan XD; Yang B; Ma T Opt Lett; 2012 Feb; 37(4):698-700. PubMed ID: 22344152 [TBL] [Abstract][Full Text] [Related]
2. Observation of enhanced transmission for s-polarized light through a subwavelength slit. Guillaumée M; Nikitin AY; Klein MJ; Dunbar LA; Spassov V; Eckert R; Martín-Moreno L; García-Vidal FJ; Stanley RP Opt Express; 2010 Apr; 18(9):9722-7. PubMed ID: 20588821 [TBL] [Abstract][Full Text] [Related]
3. The mechanism of the polarization dependence of the optical transmission in subwavelength metal hole arrays. Zhao Q; Li C; Zhou YS; Wang HY J Phys Condens Matter; 2011 Jan; 23(1):015005. PubMed ID: 21406820 [TBL] [Abstract][Full Text] [Related]
4. Design of ultrathin plasmonic quarter-wave plate based on period coupling. Yang B; Ye WM; Yuan XD; Zhu ZH; Zeng C Opt Lett; 2013 Mar; 38(5):679-81. PubMed ID: 23455263 [TBL] [Abstract][Full Text] [Related]
5. Transmission of light through a periodic array of slits in a thick metallic film. Xie Y; Zakharian A; Moloney J; Mansuripur M Opt Express; 2005 Jun; 13(12):4485-91. PubMed ID: 19495363 [TBL] [Abstract][Full Text] [Related]
6. Second-harmonic generation from metal-film nanohole arrays. Lu H; Liu X; Zhou R; Gong Y; Mao D Appl Opt; 2010 Apr; 49(12):2347-51. PubMed ID: 20411015 [TBL] [Abstract][Full Text] [Related]
8. Switchable polarization manipulation at the telecom wavelength based on L-shaped hybrid Au-VO Yang J; Zhang J Opt Express; 2021 Oct; 29(22):35532-35543. PubMed ID: 34808984 [TBL] [Abstract][Full Text] [Related]
9. Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. Rahmani M; Lukiyanchuk B; Ng B; Tavakkoli K G A; Liew YF; Hong MH Opt Express; 2011 Mar; 19(6):4949-56. PubMed ID: 21445130 [TBL] [Abstract][Full Text] [Related]
10. Surface-plasmon-assisted electromagnetic wave propagation. Yang W; Reed JM; Wang H; Zou S Phys Chem Chem Phys; 2010 Oct; 12(39):12647-52. PubMed ID: 20730226 [TBL] [Abstract][Full Text] [Related]
11. Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing. Perrotton C; Javahiraly N; Slaman M; Dam B; Meyrueis P Opt Express; 2011 Nov; 19 Suppl 6():A1175-83. PubMed ID: 22109612 [TBL] [Abstract][Full Text] [Related]
12. Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves. Lee KL; Wu SH; Lee CW; Wei PK Opt Express; 2011 Nov; 19(24):24530-9. PubMed ID: 22109480 [TBL] [Abstract][Full Text] [Related]
13. Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures. Thompson PG; Biris CG; Osley EJ; Gaathon O; Osgood RM; Panoiu NC; Warburton PA Opt Express; 2011 Dec; 19(25):25035-47. PubMed ID: 22273895 [TBL] [Abstract][Full Text] [Related]
14. Au nanoparticle based localized surface plasmon resonance substrates fabricated by dynamic shadowing growth. Fu J; Zhao Y Nanotechnology; 2010 Apr; 21(17):175303. PubMed ID: 20368679 [TBL] [Abstract][Full Text] [Related]
18. Experimental demonstration of a wave plate utilizing localized plasmonic resonances in nanoapertures. Cadusch JJ; James TD; Roberts A Opt Express; 2013 Nov; 21(23):28450-5. PubMed ID: 24514357 [TBL] [Abstract][Full Text] [Related]
19. A standing-wave interpretation of plasmon resonance excitation in split-ring resonators. Chen WY; Lin CH Opt Express; 2010 Jun; 18(13):14280-92. PubMed ID: 20588563 [TBL] [Abstract][Full Text] [Related]
20. Experimental study on polarization lens formed by asymmetrical metallic hole array. Yin S; Dong X; Wei X; Deng Q; Shi L; Pan Y; Du C Appl Opt; 2011 Nov; 50(31):G118-22. PubMed ID: 22086035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]