These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22344169)

  • 1. Toward two-dimensional nanometer resolution hard X-ray differential-interference-contrast imaging using modified photon sieves.
    Xie C; Zhu X; Li H; Shi L; Hua Y; Liu M
    Opt Lett; 2012 Feb; 37(4):749-51. PubMed ID: 22344169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime.
    Vila-Comamala J; Gorelick S; Färm E; Kewish CM; Diaz A; Barrett R; Guzenko VA; Ritala M; David C
    Opt Express; 2011 Jan; 19(1):175-84. PubMed ID: 21263555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zernike apodized photon sieves for high-resolution phase-contrast x-ray microscopy.
    Cheng G; Hu C; Xu P; Xing T
    Opt Lett; 2010 Nov; 35(21):3610-2. PubMed ID: 21042366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime.
    Di Fabrizio E; Cojoc D; Emiliani V; Cabrini S; Coppey-Moisan M; Ferrari E; Garbin V; Altissimo M
    Microsc Res Tech; 2004 Nov; 65(4-5):252-62. PubMed ID: 15630683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.
    von Hofsten O; Bertilson M; Reinspach J; Holmberg A; Hertz HM; Vogt U
    Opt Lett; 2009 Sep; 34(17):2631-3. PubMed ID: 19724514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential-interference-contrast digital in-line holography microscopy based on a single-optical-element.
    Zhang Y; Xie C
    Opt Lett; 2015 Nov; 40(21):5015-8. PubMed ID: 26512507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full-field microimaging with 8 keV X-rays achieves a spatial resolutions better than 20 nm.
    Chen TY; Chen YT; Wang CL; Kempson IM; Lee WK; Chu YS; Hwu Y; Margaritondo G
    Opt Express; 2011 Oct; 19(21):19919-24. PubMed ID: 21997000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of cochlear tissue with a grating interferometer and hard X-rays.
    Richter CP; Shintani-Smith S; Fishman A; David C; Robinson I; Rau C
    Microsc Res Tech; 2009 Dec; 72(12):902-7. PubMed ID: 19455683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses.
    Yan H; Rose V; Shu D; Lima E; Kang HC; Conley R; Liu C; Jahedi N; Macrander AT; Stephenson GB; Holt M; Chu YS; Lu M; Maser J
    Opt Express; 2011 Aug; 19(16):15069-76. PubMed ID: 21934868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards tender X-rays with Zernike phase-contrast imaging of biological samples at 50 nm resolution.
    Vartiainen I; Warmer M; Goeries D; Herker E; Reimer R; David C; Meents A
    J Synchrotron Radiat; 2014 Jul; 21(Pt 4):790-4. PubMed ID: 24971976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential near-edge coherent diffractive imaging using a femtosecond high-harmonic XUV light source.
    Weise F; Neumark DM; Leone SR; Gessner O
    Opt Express; 2012 Nov; 20(24):26167-75. PubMed ID: 23187472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ptychographic coherent x-ray diffractive imaging in the water window.
    Giewekemeyer K; Beckers M; Gorniak T; Grunze M; Salditt T; Rosenhahn A
    Opt Express; 2011 Jan; 19(2):1037-50. PubMed ID: 21263642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.
    Wang Z; Gao K; Chen J; Hong Y; Ge X; Wang D; Pan Z; Zhu P; Yun W; Jacobsen C; Wu Z
    Biotechnol Adv; 2013; 31(3):387-92. PubMed ID: 22521962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase retrieval in X-ray phase-contrast imaging suitable for tomography.
    Burvall A; Lundström U; Takman PA; Larsson DH; Hertz HM
    Opt Express; 2011 May; 19(11):10359-76. PubMed ID: 21643293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-energy phase-contrast X-ray imaging using a two-crystal X-ray interferometer.
    Yoneyama A; Takeda T; Tsuchiya Y; Wu J; Lwin TT; Hyodo K; Hirai Y
    J Synchrotron Radiat; 2005 Jul; 12(Pt 4):534-6. PubMed ID: 15968135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image contrast in X-ray reflection interface microscopy: comparison of data with model calculations and simulations.
    Fenter P; Park C; Kohli V; Zhang Z
    J Synchrotron Radiat; 2008 Nov; 15(Pt 6):558-71. PubMed ID: 18955761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility study of hard-x-ray nanofocusing above 20 keV using compound photon sieves.
    Xie C; Zhu X; Li H; Shi L; Wang Y
    Opt Lett; 2010 Dec; 35(23):4048-50. PubMed ID: 21124608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative characterization of x-ray differential interference contrast microscopy using modulation transfer function.
    Nakamura T; Chang C
    Opt Express; 2011 Aug; 19(16):15304-21. PubMed ID: 21934894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging.
    Vila-Comamala J; Diaz A; Guizar-Sicairos M; Mantion A; Kewish CM; Menzel A; Bunk O; David C
    Opt Express; 2011 Oct; 19(22):21333-44. PubMed ID: 22108984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray imaging of various biological samples using a phase-contrast hard X-ray microscope.
    Kim GB; Yoon YJ; Shin TJ; Youn HS; Gho YS; Lee SJ
    Microsc Res Tech; 2008 Sep; 71(9):639-43. PubMed ID: 18454474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.