BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22344246)

  • 1. The limits of genome-wide methods for pharmacogenomic testing.
    Gamazon ER; Skol AD; Perera MA
    Pharmacogenet Genomics; 2012 Apr; 22(4):261-72. PubMed ID: 22344246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic ancestry plays a central role in population pharmacogenomics.
    Yang HC; Chen CW; Lin YT; Chu SK
    Commun Biol; 2021 Feb; 4(1):171. PubMed ID: 33547344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole genome sequencing identifies high-impact variants in well-known pharmacogenomic genes.
    Choi J; Tantisira KG; Duan QL
    Pharmacogenomics J; 2019 Apr; 19(2):127-135. PubMed ID: 30214008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response.
    Kozyra M; Ingelman-Sundberg M; Lauschke VM
    Genet Med; 2017 Jan; 19(1):20-29. PubMed ID: 27101133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacogenomic allele coverage of genome-wide genotyping arrays: a comparative analysis.
    Lenz C; Narang A; Bousman CA
    Pharmacogenet Genomics; 2024 Jun; 34(4):130-134. PubMed ID: 38359167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similarity in recombination rate and linkage disequilibrium at CYP2C and CYP2D cytochrome P450 gene regions among Europeans indicates signs of selection and no advantage of using tagSNPs in population isolates.
    Pimenoff VN; Laval G; Comas D; Palo JU; Gut I; Cann H; Excoffier L; Sajantila A
    Pharmacogenet Genomics; 2012 Dec; 22(12):846-57. PubMed ID: 23089684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implication of next-generation sequencing on association studies.
    Siu H; Zhu Y; Jin L; Xiong M
    BMC Genomics; 2011 Jun; 12():322. PubMed ID: 21682891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-generation sequencing of pharmacogenes: a critical analysis focusing on schizophrenia treatment.
    Drögemöller BI; Wright GE; Niehaus DJ; Emsley R; Warnich L
    Pharmacogenet Genomics; 2013 Dec; 23(12):666-74. PubMed ID: 24141736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel copy-number variations in pharmacogenes contribute to interindividual differences in drug pharmacokinetics.
    Santos M; Niemi M; Hiratsuka M; Kumondai M; Ingelman-Sundberg M; Lauschke VM; Rodríguez-Antona C
    Genet Med; 2018 Jun; 20(6):622-629. PubMed ID: 29261188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genotype and allele frequencies of drug-metabolizing enzymes and drug transporter genes affecting immunosuppressants in the Spanish white population.
    Bosó V; Herrero MJ; Buso E; Galán J; Almenar L; Sánchez-Lázaro I; Sánchez-Plumed J; Bea S; Prieto M; García M; Pastor A; Sole A; Poveda JL; Aliño SF
    Ther Drug Monit; 2014 Apr; 36(2):159-68. PubMed ID: 24232128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATRIUM: testing untyped SNPs in case-control association studies with related individuals.
    Wang Z; McPeek MS
    Am J Hum Genet; 2009 Nov; 85(5):667-78. PubMed ID: 19913122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of genetic variation in drug ADME-related genes in Thais with Caucasian, African and Asian HapMap populations.
    Jittikoon J; Mahasirimongkol S; Charoenyingwattana A; Chaikledkaew U; Tragulpiankit P; Mangmool S; Inunchot W; Somboonyosdes C; Wichukchinda N; Sawanpanyalert P; He Y; McLeod HL; Chantratita W
    J Hum Genet; 2016 Feb; 61(2):119-27. PubMed ID: 26423926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A case study of the utility of the HapMap database for pharmacogenomic haplotype analysis in the Taiwanese population.
    Lin E; Hwang Y; Tzeng CM
    Mol Diagn Ther; 2006; 10(6):367-70. PubMed ID: 17154653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pharmacogene database enhanced by the 1000 Genomes Project.
    Gamazon ER; Zhang W; Huang RS; Dolan ME; Cox NJ
    Pharmacogenet Genomics; 2009 Oct; 19(10):829-32. PubMed ID: 19745786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating coverage of exons by HapMap SNPs.
    Dong X; Zhong T; Xu T; Xia Y; Li B; Li C; Yuan L; Ding G; Li Y
    Genomics; 2013 Jan; 101(1):20-3. PubMed ID: 23000193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power-based, phase-informed selection of single nucleotide polymorphisms for disease association screens.
    Saccone SF; Rice JP; Saccone NL
    Genet Epidemiol; 2006 Sep; 30(6):459-70. PubMed ID: 16685721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-genome resequencing in pharmacogenomics: moving away from past disparities to globally representative applications.
    Drögemöller BI; Wright GE; Niehaus DJ; Emsley RA; Warnich L
    Pharmacogenomics; 2011 Dec; 12(12):1717-28. PubMed ID: 22118054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The expected power of genome-wide linkage disequilibrium testing using single nucleotide polymorphism markers for detecting a low-frequency disease variant.
    Ohashi J; Tokunaga K
    Ann Hum Genet; 2002 Jul; 66(Pt 4):297-306. PubMed ID: 12418970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compilation of a comprehensive gene panel for systematic assessment of genes that govern an individual's drug responses.
    Feng J; Sun J; Wang MZ; Zhang Z; Kim ST; Zhu Y; Sun J; Xu J
    Pharmacogenomics; 2010 Oct; 11(10):1403-25. PubMed ID: 21047203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions.
    Nebert DW; Zhang G; Vesell ES
    Drug Metab Rev; 2008; 40(2):187-224. PubMed ID: 18464043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.