These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 22344653)
1. Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase. Moon HJ; Tiwari MK; Singh R; Kang YC; Lee JK Appl Environ Microbiol; 2012 May; 78(9):3079-86. PubMed ID: 22344653 [TBL] [Abstract][Full Text] [Related]
2. Cloning and characterization of a ribitol dehydrogenase from Zymomonas mobilis. Moon HJ; Tiwari M; Jeya M; Lee JK Appl Microbiol Biotechnol; 2010 Jun; 87(1):205-14. PubMed ID: 20127234 [TBL] [Abstract][Full Text] [Related]
3. The substitution of a single amino acid residue (Ser-116 --> Asp) alters NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis into a glucose dehydrogenase with dual coenzyme specificity. Wiegert T; Sahm H; Sprenger GA J Biol Chem; 1997 May; 272(20):13126-33. PubMed ID: 9148926 [TBL] [Abstract][Full Text] [Related]
4. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. Watanabe S; Kodaki T; Makino K J Biol Chem; 2005 Mar; 280(11):10340-9. PubMed ID: 15623532 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of NADP(H)-dependent 1,5-anhydro-D-fructose reductase from Sinorhizobium morelense at 2.2 A resolution: construction of a NADH-accepting mutant and its application in rare sugar synthesis. Dambe TR; Kühn AM; Brossette T; Giffhorn F; Scheidig AJ Biochemistry; 2006 Aug; 45(33):10030-42. PubMed ID: 16906761 [TBL] [Abstract][Full Text] [Related]
6. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814 [TBL] [Abstract][Full Text] [Related]
7. Determinants of nucleotide-binding selectivity of malic enzyme. Hsieh JY; Chen MC; Hung HC PLoS One; 2011; 6(9):e25312. PubMed ID: 21980421 [TBL] [Abstract][Full Text] [Related]
8. Identification of cofactor discrimination sites in NAD-isocitrate dehydrogenase from Pyrococcus furiosus. Steen IH; Lien T; Madsen MS; Birkeland NK Arch Microbiol; 2002 Oct; 178(4):297-300. PubMed ID: 12209263 [TBL] [Abstract][Full Text] [Related]
9. Critical residues for the coenzyme specificity of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase. Cho H; Oliveira MA; Tai HH Arch Biochem Biophys; 2003 Nov; 419(2):139-46. PubMed ID: 14592457 [TBL] [Abstract][Full Text] [Related]
10. Key NAD+-binding residues in human 15-hydroxyprostaglandin dehydrogenase. Cho H; Hamza A; Zhan CG; Tai HH Arch Biochem Biophys; 2005 Jan; 433(2):447-53. PubMed ID: 15581601 [TBL] [Abstract][Full Text] [Related]
11. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes. Singh R; Singh R; Kim IW; Sigdel S; Kalia VC; Kang YC; Lee JK Enzyme Microb Technol; 2015 May; 72():56-64. PubMed ID: 25837508 [TBL] [Abstract][Full Text] [Related]
12. Change of nucleotide specificity and enhancement of catalytic efficiency in single point mutants of Vibrio harveyi aldehyde dehydrogenase. Zhang L; Ahvazi B; Szittner R; Vrielink A; Meighen E Biochemistry; 1999 Aug; 38(35):11440-7. PubMed ID: 10471295 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of the thioredoxin-dependent activation of the NADP-malate dehydrogenase and cofactor specificity. Schepens I; Johansson K; Decottignies P; Gillibert M; Hirasawa M; Knaff DB; Miginiac-Maslow M J Biol Chem; 2000 Jul; 275(28):20996-1001. PubMed ID: 10801830 [TBL] [Abstract][Full Text] [Related]
15. Mutation of nicotinamide pocket residues in rat liver 3 alpha-hydroxysteroid dehydrogenase reveals different modes of cofactor binding. Ma H; Ratnam K; Penning TM Biochemistry; 2000 Jan; 39(1):102-9. PubMed ID: 10625484 [TBL] [Abstract][Full Text] [Related]
16. The amino acid sequence of ribitol dehydrogenase-F, a mutant enzyme with improved xylitol dehydrogenase activity. Homsi-Brandeburgo MI; Toyama MH; Marangoni S; Ward RJ; Giglio JR; Hartley BS J Protein Chem; 1999 May; 18(4):489-95. PubMed ID: 10449046 [TBL] [Abstract][Full Text] [Related]
17. Converting NAD-specific inositol dehydrogenase to an efficient NADP-selective catalyst, with a surprising twist. Zheng H; Bertwistle D; Sanders DA; Palmer DR Biochemistry; 2013 Aug; 52(34):5876-83. PubMed ID: 23952058 [TBL] [Abstract][Full Text] [Related]
18. Engineering of the cofactor specificities and isoform-specific inhibition of malic enzyme. Hsieh JY; Hung HC J Biol Chem; 2009 Feb; 284(7):4536-44. PubMed ID: 19091740 [TBL] [Abstract][Full Text] [Related]
19. Determinants of cofactor specificity in isocitrate dehydrogenase: structure of an engineered NADP+ --> NAD+ specificity-reversal mutant. Hurley JH; Chen R; Dean AM Biochemistry; 1996 May; 35(18):5670-8. PubMed ID: 8639526 [TBL] [Abstract][Full Text] [Related]
20. Coenzyme specificity of human monomeric carbonyl reductase: contribution of Lys-15, Ala-37 and Arg-38. Sciotti M; Wermuth B Chem Biol Interact; 2001 Jan; 130-132(1-3):871-8. PubMed ID: 11306102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]