These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 22344819)
81. PlexinD1 is required for proper patterning of the periocular vascular network and for the establishment of corneal avascularity during avian ocular development. Kwiatkowski SC; Ojeda AF; Lwigale PY Dev Biol; 2016 Mar; 411(1):128-39. PubMed ID: 26783882 [TBL] [Abstract][Full Text] [Related]
82. Angiogenesis and intramembranous osteogenesis. Percival CJ; Richtsmeier JT Dev Dyn; 2013 Aug; 242(8):909-22. PubMed ID: 23737393 [TBL] [Abstract][Full Text] [Related]
83. Vascular endothelial growth factor signaling affects both angiogenesis and osteogenesis during the development of scleral ossicles. Jabalee J; Franz-Odendaal TA Dev Biol; 2015 Oct; 406(1):52-62. PubMed ID: 26210172 [TBL] [Abstract][Full Text] [Related]
84. Towards understanding the dose and timing effect of hydrocortisone treatment on the scleral ossicle system within the chicken eye. Hammer CL; Franz-Odendaal TA J Anat; 2018 Feb; 232(2):270-282. PubMed ID: 29210090 [TBL] [Abstract][Full Text] [Related]
85. A scanning electron microscopic study of the developing epithelial scleral papillae in the eye of the embryonic chick. Fyfe DM; Hall BK J Morphol; 1981 Feb; 167(2):201-9. PubMed ID: 7241598 [TBL] [Abstract][Full Text] [Related]
86. The origin of the ectomesenchymal condensations which precede the development of the bony scleral ossicles in the eyes of embryonic chicks. Fyfe DM; Hall BK J Embryol Exp Morphol; 1983 Feb; 73():69-86. PubMed ID: 6875466 [TBL] [Abstract][Full Text] [Related]
87. Vasculogenesis and the induction of skeletogenic condensations in the avian eye. Jourdeuil K; Franz-Odendaal TA Anat Rec (Hoboken); 2012 Apr; 295(4):691-8. PubMed ID: 22344819 [TBL] [Abstract][Full Text] [Related]
88. Role of the vascular endothelial growth factor isoforms in retinal angiogenesis and DiGeorge syndrome. Stalmans I Verh K Acad Geneeskd Belg; 2005; 67(4):229-76. PubMed ID: 16334858 [TBL] [Abstract][Full Text] [Related]
89. The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Hall BK; Miyake T Anat Embryol (Berl); 1992 Jul; 186(2):107-24. PubMed ID: 1510240 [TBL] [Abstract][Full Text] [Related]
90. Embryonic and adult vasculogenesis. Drake CJ Birth Defects Res C Embryo Today; 2003 Feb; 69(1):73-82. PubMed ID: 12768659 [TBL] [Abstract][Full Text] [Related]
91. Formation of the coronary vasculature during development. Tomanek RJ Angiogenesis; 2005; 8(3):273-84. PubMed ID: 16308734 [TBL] [Abstract][Full Text] [Related]
92. Hedgehog signaling in murine vasculogenesis and angiogenesis. Byrd N; Grabel L Trends Cardiovasc Med; 2004 Nov; 14(8):308-13. PubMed ID: 15596107 [TBL] [Abstract][Full Text] [Related]
93. Endothelial cell development, vasculogenesis, angiogenesis, and tumor neovascularization: an update. Tang DG; Conti CJ Semin Thromb Hemost; 2004 Feb; 30(1):109-17. PubMed ID: 15034802 [TBL] [Abstract][Full Text] [Related]
94. Review of the effects of anti-angiogenic compounds on the epiphyseal growth plate. Hall AP; Westwood FR; Wadsworth PF Toxicol Pathol; 2006; 34(2):131-47. PubMed ID: 16537292 [TBL] [Abstract][Full Text] [Related]