These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22344824)

  • 1. Identifying fragments of natural speech from the listener's MEG signals.
    Koskinen M; Viinikanoja J; Kurimo M; Klami A; Kaski S; Hari R
    Hum Brain Mapp; 2013 Jun; 34(6):1477-89. PubMed ID: 22344824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pace of prosodic phrasing couples the listener's cortex to the reader's voice.
    Bourguignon M; De Tiège X; de Beeck MO; Ligot N; Paquier P; Van Bogaert P; Goldman S; Hari R; Jousmäki V
    Hum Brain Mapp; 2013 Feb; 34(2):314-26. PubMed ID: 22392861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering cortical MEG responses to listened audiobook stories.
    Koskinen M; Seppä M
    Neuroimage; 2014 Oct; 100():263-70. PubMed ID: 24945666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural source dynamics of brain responses to continuous stimuli: Speech processing from acoustics to comprehension.
    Brodbeck C; Presacco A; Simon JZ
    Neuroimage; 2018 May; 172():162-174. PubMed ID: 29366698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atypical MEG inter-subject correlation during listening to continuous natural speech in dyslexia.
    Thiede A; Glerean E; Kujala T; Parkkonen L
    Neuroimage; 2020 Aug; 216():116799. PubMed ID: 32294536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain activity reflects the predictability of word sequences in listened continuous speech.
    Koskinen M; Kurimo M; Gross J; Hyvärinen A; Hari R
    Neuroimage; 2020 Oct; 219():116936. PubMed ID: 32474080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Representations of the temporal envelope of sounds in human auditory cortex: can the results from invasive intracortical "depth" electrode recordings be replicated using non-invasive MEG "virtual electrodes"?
    Millman RE; Prendergast G; Hymers M; Green GG
    Neuroimage; 2013 Jan; 64():185-96. PubMed ID: 22989625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuro-current response functions: A unified approach to MEG source analysis under the continuous stimuli paradigm.
    Das P; Brodbeck C; Simon JZ; Babadi B
    Neuroimage; 2020 May; 211():116528. PubMed ID: 31945510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MEG Intersubject Phase Locking of Stimulus-Driven Activity during Naturalistic Speech Listening Correlates with Musical Training.
    Puschmann S; Regev M; Baillet S; Zatorre RJ
    J Neurosci; 2021 Mar; 41(12):2713-2722. PubMed ID: 33536196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consistency and similarity of MEG- and fMRI-signal time courses during movie viewing.
    Lankinen K; Saari J; Hlushchuk Y; Tikka P; Parkkonen L; Hari R; Koskinen M
    Neuroimage; 2018 Jun; 173():361-369. PubMed ID: 29486325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring the cortical tracking of speech with optically-pumped magnetometers.
    de Lange P; Boto E; Holmes N; Hill RM; Bowtell R; Wens V; De Tiège X; Brookes MJ; Bourguignon M
    Neuroimage; 2021 Jun; 233():117969. PubMed ID: 33744453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introducing MEG-MASC a high-quality magneto-encephalography dataset for evaluating natural speech processing.
    Gwilliams L; Flick G; Marantz A; Pylkkänen L; Poeppel D; King JR
    Sci Data; 2023 Dec; 10(1):862. PubMed ID: 38049487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding the auditory brain with canonical component analysis.
    de Cheveigné A; Wong DDE; Di Liberto GM; Hjortkjær J; Slaney M; Lalor E
    Neuroimage; 2018 May; 172():206-216. PubMed ID: 29378317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical Tracking of Complex Sound Envelopes: Modeling the Changes in Response with Intensity.
    Drennan DP; Lalor EC
    eNeuro; 2019; 6(3):. PubMed ID: 31171606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic brain activity phase-locked to the envelope, the syllable onsets, and the fundamental frequency of a perceived speech signal.
    Hertrich I; Dietrich S; Trouvain J; Moos A; Ackermann H
    Psychophysiology; 2012 Mar; 49(3):322-34. PubMed ID: 22175821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neocortical activity tracks the hierarchical linguistic structures of self-produced speech during reading aloud.
    Bourguignon M; Molinaro N; Lizarazu M; Taulu S; Jousmäki V; Lallier M; Carreiras M; De Tiège X
    Neuroimage; 2020 Aug; 216():116788. PubMed ID: 32348908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mutual information analysis of neural coding of speech by low-frequency MEG phase information.
    Cogan GB; Poeppel D
    J Neurophysiol; 2011 Aug; 106(2):554-63. PubMed ID: 21562190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the potential of MEG and EEG to uncover brain tracking of speech temporal envelope.
    Destoky F; Philippe M; Bertels J; Verhasselt M; Coquelet N; Vander Ghinst M; Wens V; De Tiège X; Bourguignon M
    Neuroimage; 2019 Jan; 184():201-213. PubMed ID: 30205208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex.
    Luo H; Poeppel D
    Neuron; 2007 Jun; 54(6):1001-10. PubMed ID: 17582338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multivariate method for estimating cross-frequency neuronal interactions and correcting linear mixing in MEG data, using canonical correlations.
    Soto JL; Lachaux JP; Baillet S; Jerbi K
    J Neurosci Methods; 2016 Sep; 271():169-81. PubMed ID: 27468679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.