These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22344864)

  • 1. Templated growth of covalently bonded three-dimensional carbon nanotube networks originated from graphene.
    Fu Y; Carlberg B; Lindahl N; Lindvall N; Bielecki J; Matic A; Song Y; Hu Z; Lai Z; Ye L; Sun J; Zhang Y; Zhang Y; Liu J
    Adv Mater; 2012 Mar; 24(12):1576-81. PubMed ID: 22344864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotube network embroidered graphene films for monolithic all-carbon electronics.
    Shi E; Li H; Yang L; Hou J; Li Y; Li L; Cao A; Fang Y
    Adv Mater; 2015 Jan; 27(4):682-8. PubMed ID: 25607917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption.
    Yu D; Liu F
    Nano Lett; 2007 Oct; 7(10):3046-50. PubMed ID: 17845065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced graphitization of carbon around carbon nanotubes during the formation of carbon nanotube/graphite composites by pyrolysis of carbon nanotube/polyaniline composites.
    Nam DH; Cha SI; Jeong YJ; Hong SH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7365-9. PubMed ID: 24245256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced mechanical properties of nanocomposites at low graphene content.
    Rafiee MA; Rafiee J; Wang Z; Song H; Yu ZZ; Koratkar N
    ACS Nano; 2009 Dec; 3(12):3884-90. PubMed ID: 19957928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled carbon-nanotube junctions self-assembled from graphene nanoribbons.
    He L; Lu JQ; Jiang H
    Small; 2009 Dec; 5(24):2802-6. PubMed ID: 19927297
    [No Abstract]   [Full Text] [Related]  

  • 7. Carbon nanotube field effect transistors with suspended graphene gates.
    Svensson J; Lindahl N; Yun H; Seo M; Midtvedt D; Tarakanov Y; Lindvall N; Nerushev O; Kinaret J; Lee S; Campbell EE
    Nano Lett; 2011 Sep; 11(9):3569-75. PubMed ID: 21848317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of carbon nanoscrolls from monolayer graphene.
    Xia D; Xue Q; Xie J; Chen H; Lv C; Besenbacher F; Dong M
    Small; 2010 Sep; 6(18):2010-9. PubMed ID: 20715074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing polymer composite materials: carbon nanotubes or graphene?
    Sun X; Sun H; Li H; Peng H
    Adv Mater; 2013 Oct; 25(37):5153-76. PubMed ID: 23813859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The concept of cutting lines in carbon nanotube science.
    Samsonidze GG; Saito R; Jorio A; Pimenta MA; Souza Filho AG; Grüneis A; Dresselhaus G; Dresselhaus MS
    J Nanosci Nanotechnol; 2003 Dec; 3(6):431-58. PubMed ID: 15002123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rebar graphene.
    Yan Z; Peng Z; Casillas G; Lin J; Xiang C; Zhou H; Yang Y; Ruan G; Raji AR; Samuel EL; Hauge RH; Yacaman MJ; Tour JM
    ACS Nano; 2014 May; 8(5):5061-8. PubMed ID: 24694285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Registry-induced electronic superstructure in double-walled carbon nanotubes, associated with the interaction between two graphene-like monolayers.
    Tison Y; Giusca CE; Sloan J; Silva SR
    ACS Nano; 2008 Oct; 2(10):2113-20. PubMed ID: 19206458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives on carbon nanotubes and graphene Raman spectroscopy.
    Dresselhaus MS; Jorio A; Hofmann M; Dresselhaus G; Saito R
    Nano Lett; 2010 Mar; 10(3):751-8. PubMed ID: 20085345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene--nanotube--iron hierarchical nanostructure as lithium ion battery anode.
    Lee SH; Sridhar V; Jung JH; Karthikeyan K; Lee YS; Mukherjee R; Koratkar N; Oh IK
    ACS Nano; 2013 May; 7(5):4242-51. PubMed ID: 23550743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber.
    Wang L; Huang Y; Li C; Chen J; Sun X
    Phys Chem Chem Phys; 2015 Jan; 17(3):2228-34. PubMed ID: 25485522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of nucleobases with graphene and carbon nanotube: a review of computational studies.
    Chehel Amirani M; Tang T
    J Biomol Struct Dyn; 2015; 33(7):1567-97. PubMed ID: 25118044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal stability of graphene and nanotube covalent functionalization.
    Margine ER; Bocquet ML; Blase X
    Nano Lett; 2008 Oct; 8(10):3315-9. PubMed ID: 18767882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transforming graphene nanoribbons into nanotubes by use of point defects.
    Sgouros A; Sigalas MM; Papagelis K; Kalosakas G
    J Phys Condens Matter; 2014 Mar; 26(12):125301. PubMed ID: 24594675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Nanotube Nanocomposites with Highly Enhanced Strength and Conductivity for Flexible Electric Circuits.
    Hwang JY; Kim HS; Kim JH; Shin US; Lee SH
    Langmuir; 2015 Jul; 31(28):7844-51. PubMed ID: 26107468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One- and two-dimensional diffusion of metal atoms in graphene.
    Gan Y; Sun L; Banhart F
    Small; 2008 May; 4(5):587-91. PubMed ID: 18398922
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.