These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22344965)

  • 1. MHC-dependent mate choice in humans: why genomic patterns from the HapMap European American dataset support the hypothesis.
    Laurent R; Chaix R
    Bioessays; 2012 Apr; 34(4):267-71. PubMed ID: 22344965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HapMap European American genotypes are compatible with the hypothesis of MHC-dependent mate choice (response to DOI 10.1002/bies.201200023, Derti and Roth).
    Laurent R; Chaix R
    Bioessays; 2012 Oct; 34(10):871-2. PubMed ID: 22777848
    [No Abstract]   [Full Text] [Related]  

  • 3. Response to "MHC-dependent mate choice in humans: Why genomic patterns from the HapMap European American data set support the hypothesis". HapMap genotypes do not confidently support a role for the MHC locus in human mate selection.
    Derti A; Roth FP
    Bioessays; 2012 Jul; 34(7):576-7. PubMed ID: 22467222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-random mate choice in humans: insights from a genome scan.
    Laurent R; Toupance B; Chaix R
    Mol Ecol; 2012 Feb; 21(3):587-96. PubMed ID: 22121833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of evidence for MHC-dependent mate selection within HapMap populations.
    Derti A; Cenik C; Kraft P; Roth FP
    PLoS Genet; 2010 Apr; 6(4):e1000925. PubMed ID: 20442868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is mate choice in humans MHC-dependent?
    Chaix R; Cao C; Donnelly P
    PLoS Genet; 2008 Sep; 4(9):e1000184. PubMed ID: 18787687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic variation in the odorant receptors family 13 and the mhc loci influence mate selection in a multiple sclerosis dataset.
    Khankhanian P; Gourraud PA; Caillier SJ; Santaniello A; Hauser SL; Baranzini SE; Oksenberg JR
    BMC Genomics; 2010 Nov; 11():626. PubMed ID: 21067613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic evidence for MHC disassortative mating in humans.
    Dandine-Roulland C; Laurent R; Dall'Ara I; Toupance B; Chaix R
    Proc Biol Sci; 2019 Mar; 286(1899):20182664. PubMed ID: 30890093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MHC-Dependent Mate Selection within 872 Spousal Pairs of European Ancestry from the Health and Retirement Study.
    Qiao Z; Powell JE; Evans DM
    Genes (Basel); 2018 Jan; 9(1):. PubMed ID: 29361785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MHC-disassortative mate choice and inbreeding avoidance in a solitary primate.
    Huchard E; Baniel A; Schliehe-Diecks S; Kappeler PM
    Mol Ecol; 2013 Aug; 22(15):4071-86. PubMed ID: 23889546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis.
    Winternitz J; Abbate JL; Huchard E; Havlíček J; Garamszegi LZ
    Mol Ecol; 2017 Jan; 26(2):668-688. PubMed ID: 27859823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Major histocompatibility complex-associated odour preferences and human mate choice: near and far horizons.
    Havlíček J; Winternitz J; Roberts SC
    Philos Trans R Soc Lond B Biol Sci; 2020 Jun; 375(1800):20190260. PubMed ID: 32306884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MHC-correlated mate choice in humans: a review.
    Havlicek J; Roberts SC
    Psychoneuroendocrinology; 2009 May; 34(4):497-512. PubMed ID: 19054623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of MHC-based mate preferences and fostering experiments in two congenic strains of mice.
    Arcaro KF; Eklund A
    Genetica; 1998-1999; 104(3):241-4. PubMed ID: 10386389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic basis for MHC-dependent mate choice.
    Yamazaki K; Beauchamp GK
    Adv Genet; 2007; 59():129-45. PubMed ID: 17888797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mate choice for major histocompatibility complex genetic divergence as a bet-hedging strategy in the Atlantic salmon (Salmo salar).
    Evans ML; Dionne M; Miller KM; Bernatchez L
    Proc Biol Sci; 2012 Jan; 279(1727):379-86. PubMed ID: 21697172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of genetic dissimilarity in the reproductive success and mate choice of brown trout - females fishing for optimal MHC dissimilarity.
    Forsberg LA; Dannewitz J; Petersson E; Grahn M
    J Evol Biol; 2007 Sep; 20(5):1859-69. PubMed ID: 17714303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opposites attract: MHC-associated mate choice in a polygynous primate.
    Setchell JM; Charpentier MJ; Abbott KM; Wickings EJ; Knapp LA
    J Evol Biol; 2010 Jan; 23(1):136-48. PubMed ID: 19891747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Male mate choice relies on major histocompatibility complex class I in a sex-role-reversed pipefish.
    Roth O; Sundin J; Berglund A; Rosenqvist G; Wegner KM
    J Evol Biol; 2014 May; 27(5):929-38. PubMed ID: 24725009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compatibility counts: MHC-associated mate choice in a wild promiscuous primate.
    Schwensow N; Eberle M; Sommer S
    Proc Biol Sci; 2008 Mar; 275(1634):555-64. PubMed ID: 18089539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.