BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22345156)

  • 1. The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure.
    Alexander B; Daulton TL; Genin GM; Lipner J; Pasteris JD; Wopenka B; Thomopoulos S
    J R Soc Interface; 2012 Aug; 9(73):1774-86. PubMed ID: 22345156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue.
    Liu Y; Thomopoulos S; Chen C; Birman V; Buehler MJ; Genin GM
    J R Soc Interface; 2014 Mar; 11(92):20130835. PubMed ID: 24352669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A search for apatite crystals in the gap zone of collagen fibrils in bone using dark-field illumination.
    Schwarcz HP; Binkley DM; Luo L; Grandfield K
    Bone; 2020 Jun; 135():115304. PubMed ID: 32145461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The anisotropy of osteonal bone and its ultrastructural implications.
    Turner CH; Chandran A; Pidaparti RM
    Bone; 1995 Jul; 17(1):85-9. PubMed ID: 7577163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model.
    Lees S
    Connect Tissue Res; 1987; 16(4):281-303. PubMed ID: 3451846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals.
    Schwarcz HP; McNally EA; Botton GA
    J Struct Biol; 2014 Dec; 188(3):240-8. PubMed ID: 25449316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils.
    Georgiadis M; Müller R; Schneider P
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27335222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Average hydroxyapatite concentration is uniform in the extracollagenous ultrastructure of mineralized tissues: evidence at the 1-10-microm scale.
    Hellmich C; Ulm FJ
    Biomech Model Mechanobiol; 2003 Aug; 2(1):21-36. PubMed ID: 14586815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing the pathway of compositional changes in bone mineral with age: preliminary study of bioapatite aging in hypermineralized dolphin's bulla.
    Li Z; Pasteris JD
    Biochim Biophys Acta; 2014 Jul; 1840(7):2331-9. PubMed ID: 24650888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength.
    Fritsch A; Hellmich C; Dormieux L
    J Theor Biol; 2009 Sep; 260(2):230-52. PubMed ID: 19497330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization.
    Kim D; Lee B; Thomopoulos S; Jun YS
    Nat Commun; 2018 Mar; 9(1):962. PubMed ID: 29511184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The contribution of the organic matrix to bone's material properties.
    Burr DB
    Bone; 2002 Jul; 31(1):8-11. PubMed ID: 12110405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The locus of mineral crystallites in bone.
    Lees S; Prostak K
    Connect Tissue Res; 1988; 18(1):41-54. PubMed ID: 3180814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional mapping of mineral in intact shark centra with energy dispersive x-ray diffraction.
    Park JS; Chen H; James KC; Natanson LJ; Stock SR
    J Mech Behav Biomed Mater; 2022 Dec; 136():105506. PubMed ID: 36228402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of bioapatite mineral and fibril structure on the mechanical properties of chicken bone during the laying period.
    Wang S; Hu Y; Wu Y; Liu Y; Liu G; Yan Z; Li Q; Zhou Z; Li Z
    Poult Sci; 2019 Dec; 98(12):6393-6399. PubMed ID: 31420658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone mineral organization at the mesoscale: A review of mineral ellipsoids in bone and at bone interfaces.
    Micheletti C; Hurley A; Gourrier A; Palmquist A; Tang T; Shah FA; Grandfield K
    Acta Biomater; 2022 Apr; 142():1-13. PubMed ID: 35202855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative electron microscopic study of apatite crystals in collagen fibrils of rat bone, dentin and calcified turkey leg tendons.
    Arsenault AL
    Bone Miner; 1989 May; 6(2):165-77. PubMed ID: 2765707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early mineral deposition in calcifying tendon characterized by high voltage electron microscopy and three-dimensional graphic imaging.
    Landis WJ; Song MJ
    J Struct Biol; 1991 Oct; 107(2):116-27. PubMed ID: 1807348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone.
    Li Y; Aparicio C
    PLoS One; 2013; 8(9):e76782. PubMed ID: 24086763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive behaviour of uniaxially aligned individual mineralised collagen fibres at the micro- and nanoscale.
    Groetsch A; Gourrier A; Schwiedrzik J; Sztucki M; Beck RJ; Shephard JD; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2019 Apr; 89():313-329. PubMed ID: 30858052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.