These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22345156)

  • 21. Scanning transmission electron microscopic tomography of cortical bone using Z-contrast imaging.
    McNally E; Nan F; Botton GA; Schwarcz HP
    Micron; 2013 Jun; 49():46-53. PubMed ID: 23545162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organization of apatite crystals in human woven bone.
    Su X; Sun K; Cui FZ; Landis WJ
    Bone; 2003 Feb; 32(2):150-62. PubMed ID: 12633787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Layered water in crystal interfaces as source for bone viscoelasticity: arguments from a multiscale approach.
    Eberhardsteiner L; Hellmich C; Scheiner S
    Comput Methods Biomech Biomed Engin; 2014; 17(1):48-63. PubMed ID: 22563708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrastructure of Bone: Hierarchical Features from Nanometer to Micrometer Scale Revealed in Focused Ion Beam Sections in the TEM.
    Grandfield K; Vuong V; Schwarcz HP
    Calcif Tissue Int; 2018 Dec; 103(6):606-616. PubMed ID: 30008091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy.
    Lees S; Prostak KS; Ingle VK; Kjoller K
    Calcif Tissue Int; 1994 Sep; 55(3):180-9. PubMed ID: 7987731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ultrastructure of bone as revealed in electron microscopy of ion-milled sections.
    Schwarcz HP
    Semin Cell Dev Biol; 2015 Oct; 46():44-50. PubMed ID: 26165821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors.
    Nudelman F; Pieterse K; George A; Bomans PH; Friedrich H; Brylka LJ; Hilbers PA; de With G; Sommerdijk NA
    Nat Mater; 2010 Dec; 9(12):1004-9. PubMed ID: 20972429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Raman spectroscopic detection of changes in bioapatite in mouse femora as a function of age and in vitro fluoride treatment.
    Freeman JJ; Wopenka B; Silva MJ; Pasteris JD
    Calcif Tissue Int; 2001 Mar; 68(3):156-62. PubMed ID: 11351499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of intrafibrillar and extrafibrillar mineralized collagen/apatite scaffolds with a hierarchical structure.
    Hu C; Zilm M; Wei M
    J Biomed Mater Res A; 2016 May; 104(5):1153-61. PubMed ID: 26748775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fractal-like hierarchical organization of bone begins at the nanoscale.
    Reznikov N; Bilton M; Lari L; Stevens MM; Kröger R
    Science; 2018 May; 360(6388):. PubMed ID: 29724924
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New Insights into the Ultrastructure of Bioapatite After Partial Dissolution: Based on Whale Rostrum, the Densest Bone.
    Tang L; Zhang L; Yue M; Tian D; Su M; Li Z
    Microsc Microanal; 2019 Dec; 25(6):1323-1330. PubMed ID: 31599216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements.
    Takano Y; Turner CH; Burr DB
    J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron Microscopy Reveals Structural and Chemical Changes at the Nanometer Scale in the
    Kłosowski MM; Carzaniga R; Abellan P; Ramasse Q; McComb DW; Porter AE; Shefelbine SJ
    ACS Biomater Sci Eng; 2017 Nov; 3(11):2788-2797. PubMed ID: 33418703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of tendon to produce decellularized sheets of mineralized collagen fibrils for bone tissue repair and regeneration.
    Grue BH; Veres SP
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):845-856. PubMed ID: 31241254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth of mineral crystals in turkey tendon collagen fibers.
    Traub W; Arad T; Weiner S
    Connect Tissue Res; 1992; 28(1-2):99-111. PubMed ID: 1628493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extrafibrillar collagen demineralization-based chelate-and-rinse technique bridges the gap between wet and dry dentin bonding.
    Mai S; Wei CC; Gu LS; Tian FC; Arola DD; Chen JH; Jiao Y; Pashley DH; Niu LN; Tay FR
    Acta Biomater; 2017 Jul; 57():435-448. PubMed ID: 28499631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale.
    Fielder M; Nair AK
    Biomech Model Mechanobiol; 2019 Feb; 18(1):57-68. PubMed ID: 30088113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method.
    Barkaoui A; Tlili B; Vercher-Martínez A; Hambli R
    Comput Methods Programs Biomed; 2016 Oct; 134():69-78. PubMed ID: 27480733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The elasto-plastic nano- and microscale compressive behaviour of rehydrated mineralised collagen fibres.
    Groetsch A; Gourrier A; Casari D; Schwiedrzik J; Shephard JD; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2023 Jul; 164():332-345. PubMed ID: 37059408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.