These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 22345306)

  • 1. Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation.
    Allahverdian S; Pannu PS; Francis GA
    Cardiovasc Res; 2012 Jul; 95(2):165-72. PubMed ID: 22345306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis.
    Allahverdian S; Chehroudi AC; McManus BM; Abraham T; Francis GA
    Circulation; 2014 Apr; 129(15):1551-9. PubMed ID: 24481950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol homeostasis and high-density lipoprotein formation in arterial smooth muscle cells.
    Allahverdian S; Francis GA
    Trends Cardiovasc Med; 2010 Apr; 20(3):96-102. PubMed ID: 21130953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-binding cassette transporter A1 expression and apolipoprotein A-I binding are impaired in intima-type arterial smooth muscle cells.
    Choi HY; Rahmani M; Wong BW; Allahverdian S; McManus BM; Pickering JG; Chan T; Francis GA
    Circulation; 2009 Jun; 119(25):3223-31. PubMed ID: 19528336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smooth muscle cell phenotypic switch: implications for foam cell formation.
    Chaabane C; Coen M; Bochaton-Piallat ML
    Curr Opin Lipidol; 2014 Oct; 25(5):374-9. PubMed ID: 25110900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smooth Muscle Cells Contribute the Majority of Foam Cells in ApoE (Apolipoprotein E)-Deficient Mouse Atherosclerosis.
    Wang Y; Dubland JA; Allahverdian S; Asonye E; Sahin B; Jaw JE; Sin DD; Seidman MA; Leeper NJ; Francis GA
    Arterioscler Thromb Vasc Biol; 2019 May; 39(5):876-887. PubMed ID: 30786740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. So Much Cholesterol: the unrecognized importance of smooth muscle cells in atherosclerotic foam cell formation.
    Dubland JA; Francis GA
    Curr Opin Lipidol; 2016 Apr; 27(2):155-61. PubMed ID: 26836481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosstalk between macrophages and smooth muscle cells in atherosclerotic vascular diseases.
    Koga J; Aikawa M
    Vascul Pharmacol; 2012 Aug; 57(1):24-8. PubMed ID: 22402259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mouse model for human atherosclerosis: long-term histopathological study of lesion development in the aortic arch of apolipoprotein E-deficient (E0) mice.
    Coleman R; Hayek T; Keidar S; Aviram M
    Acta Histochem; 2006; 108(6):415-24. PubMed ID: 17007910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathways of smooth muscle foam cell formation in atherosclerosis.
    Pryma CS; Ortega C; Dubland JA; Francis GA
    Curr Opin Lipidol; 2019 Apr; 30(2):117-124. PubMed ID: 30664015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smooth muscle cell fate and plasticity in atherosclerosis.
    Allahverdian S; Chaabane C; Boukais K; Francis GA; Bochaton-Piallat ML
    Cardiovasc Res; 2018 Mar; 114(4):540-550. PubMed ID: 29385543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathologic intimal thickening in human atherosclerosis is formed by extracellular accumulation of plasma-derived lipids and dispersion of intimal smooth muscle cells.
    Nakagawa K; Nakashima Y
    Atherosclerosis; 2018 Jul; 274():235-242. PubMed ID: 29622338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis.
    Paulson KE; Zhu SN; Chen M; Nurmohamed S; Jongstra-Bilen J; Cybulsky MI
    Circ Res; 2010 Feb; 106(2):383-90. PubMed ID: 19893012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of salusin-alpha and -beta on human macrophage foam cell formation and coronary atherosclerosis.
    Watanabe T; Nishio K; Kanome T; Matsuyama TA; Koba S; Sakai T; Sato K; Hongo S; Nose K; Ota H; Kobayashi Y; Katagiri T; Shichiri M; Miyazaki A
    Circulation; 2008 Feb; 117(5):638-48. PubMed ID: 18212280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effects of vasostatin-1 against atherogenesis.
    Sato Y; Watanabe R; Uchiyama N; Ozawa N; Takahashi Y; Shirai R; Sato K; Mori Y; Matsuyama T; Ishibashi-Ueda H; Hirano T; Watanabe T
    Clin Sci (Lond); 2018 Dec; 132(23):2493-2507. PubMed ID: 30401690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy.
    McLaren JE; Michael DR; Ashlin TG; Ramji DP
    Prog Lipid Res; 2011 Oct; 50(4):331-47. PubMed ID: 21601592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of foam cell formation in atherosclerosis.
    Chistiakov DA; Melnichenko AA; Myasoedova VA; Grechko AV; Orekhov AN
    J Mol Med (Berl); 2017 Nov; 95(11):1153-1165. PubMed ID: 28785870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel in vitro model for the study of plaque development in atherosclerosis.
    Dorweiler B; Torzewski M; Dahm M; Ochsenhirt V; Lehr HA; Lackner KJ; Vahl CF
    Thromb Haemost; 2006 Jan; 95(1):182-9. PubMed ID: 16543978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circulating smooth muscle progenitor cells in arterial remodeling.
    Daniel JM; Sedding DG
    J Mol Cell Cardiol; 2011 Feb; 50(2):273-9. PubMed ID: 21047514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counteractive effects of omentin-1 against atherogenesis†.
    Watanabe K; Watanabe R; Konii H; Shirai R; Sato K; Matsuyama TA; Ishibashi-Ueda H; Koba S; Kobayashi Y; Hirano T; Watanabe T
    Cardiovasc Res; 2016 May; 110(1):118-28. PubMed ID: 26790473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.