These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22345393)

  • 1. Micro/nanofabrication for a realistic beetle wing with a superhydrophobic surface.
    Ko JH; Kim J; Hong J; Yoo Y; Lee Y; Jin TL; Park HC; Goo NS; Byun D
    Bioinspir Biomim; 2012 Mar; 7(1):016011. PubMed ID: 22345393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.
    Truong QT; Nguyen QV; Truong VT; Park HC; Byun DY; Goo NS
    Bioinspir Biomim; 2011 Sep; 6(3):036008. PubMed ID: 21865627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropy and non-homogeneity of an Allomyrina Dichotoma beetle hind wing membrane.
    Ha NS; Jin TL; Goo NS; Park HC
    Bioinspir Biomim; 2011 Dec; 6(4):046003. PubMed ID: 21992989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conceptual design of flapping-wing micro air vehicles.
    Whitney JP; Wood RJ
    Bioinspir Biomim; 2012 Sep; 7(3):036001. PubMed ID: 22498507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.
    Shang JK; Combes SA; Finio BM; Wood RJ
    Bioinspir Biomim; 2009 Sep; 4(3):036002. PubMed ID: 19713572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of preload-dependent reversible mechanical interlocking using beetle-inspired wing locking device.
    Pang C; Kang D; Kim TI; Suh KY
    Langmuir; 2012 Jan; 28(4):2181-6. PubMed ID: 22148848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of outer wing separation on lift and thrust generation in a flapping wing system.
    Mahardika N; Viet NQ; Park HC
    Bioinspir Biomim; 2011 Sep; 6(3):036006. PubMed ID: 21852715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The morphological characterization of the forewing of the Manduca sexta species for the application of biomimetic flapping wing micro air vehicles.
    O'Hara RP; Palazotto AN
    Bioinspir Biomim; 2012 Dec; 7(4):046011. PubMed ID: 23093001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.
    Zhao L; Deng X; Sane SP
    Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametric structural modeling of insect wings.
    Mengesha TE; Vallance RR; Barraja M; Mittal R
    Bioinspir Biomim; 2009 Sep; 4(3):036004. PubMed ID: 19724097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms.
    Siddall R; Kovač M
    Bioinspir Biomim; 2014 Sep; 9(3):031001. PubMed ID: 24615533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing.
    Watson GS; Cribb BW; Watson JA
    ACS Nano; 2010 Jan; 4(1):129-36. PubMed ID: 20099910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial insect wings with biomimetic wing morphology and mechanical properties.
    Liu Z; Yan X; Qi M; Zhu Y; Huang D; Zhang X; Lin L
    Bioinspir Biomim; 2017 Sep; 12(5):056007. PubMed ID: 28696330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.
    Nakata T; Liu H; Tanaka Y; Nishihashi N; Wang X; Sato A
    Bioinspir Biomim; 2011 Dec; 6(4):045002. PubMed ID: 22126793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First controlled vertical flight of a biologically inspired microrobot.
    Pérez-Arancibia NO; Ma KY; Galloway KC; Greenberg JD; Wood RJ
    Bioinspir Biomim; 2011 Sep; 6(3):036009. PubMed ID: 21878707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings.
    Ivanova EP; Hasan J; Webb HK; Truong VK; Watson GS; Watson JA; Baulin VA; Pogodin S; Wang JY; Tobin MJ; Löbbe C; Crawford RJ
    Small; 2012 Aug; 8(16):2489-94. PubMed ID: 22674670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.
    Van Truong T; Byun D; Lavine LC; Emlen DJ; Park HC; Kim MJ
    Bioinspir Biomim; 2012 Sep; 7(3):036021. PubMed ID: 22711210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and analysis of biomimetic joints for morphing of micro air vehicles.
    Grant DT; Abdulrahim M; Lind R
    Bioinspir Biomim; 2010 Dec; 5(4):045007. PubMed ID: 21098958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beetle-inspired bidirectional, asymmetric interlocking using geometry-tunable nanohairs.
    Pang C; Kim SM; Rahmawan Y; Suh KY
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4225-30. PubMed ID: 22817617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control for small-speed lateral flight in a model insect.
    Zhang YL; Sun M
    Bioinspir Biomim; 2011 Sep; 6(3):036003. PubMed ID: 21775781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.