These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

714 related articles for article (PubMed ID: 22345397)

  • 1. Observation of quantum criticality with ultracold atoms in optical lattices.
    Zhang X; Hung CL; Tung SK; Chin C
    Science; 2012 Mar; 335(6072):1070-2. PubMed ID: 22345397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.
    Greiner M; Mandel O; Esslinger T; Hänsch TW; Bloch I
    Nature; 2002 Jan; 415(6867):39-44. PubMed ID: 11780110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universality and Quantum Criticality of the One-Dimensional Spinor Bose Gas.
    Pâţu OI; Klümper A; Foerster A
    Phys Rev Lett; 2018 Jun; 120(24):243402. PubMed ID: 29956958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices.
    Trotzky S; Cheinet P; Fölling S; Feld M; Schnorrberger U; Rey AM; Polkovnikov A; Demler EA; Lukin MD; Bloch I
    Science; 2008 Jan; 319(5861):295-9. PubMed ID: 18096767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum criticality and the Tomonaga-Luttinger liquid in one-dimensional Bose gases.
    Yang B; Chen YY; Zheng YG; Sun H; Dai HN; Guan XW; Yuan ZS; Pan JW
    Phys Rev Lett; 2017 Oct; 119(16):165701. PubMed ID: 29099230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases.
    Gemelke N; Zhang X; Hung CL; Chin C
    Nature; 2009 Aug; 460(7258):995-8. PubMed ID: 19693080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons.
    Haller E; Hart R; Mark MJ; Danzl JG; Reichsöllner L; Gustavsson M; Dalmonte M; Pupillo G; Nägerl HC
    Nature; 2010 Jul; 466(7306):597-600. PubMed ID: 20671704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum coherence and entanglement with ultracold atoms in optical lattices.
    Bloch I
    Nature; 2008 Jun; 453(7198):1016-22. PubMed ID: 18563152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-slip-induced dissipation in an atomic Bose-Hubbard system.
    McKay D; White M; Pasienski M; DeMarco B
    Nature; 2008 May; 453(7191):76-9. PubMed ID: 18451857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for Efimov quantum states in an ultracold gas of caesium atoms.
    Kraemer T; Mark M; Waldburger P; Danzl JG; Chin C; Engeser B; Lange AD; Pilch K; Jaakkola A; Nägerl HC; Grimm R
    Nature; 2006 Mar; 440(7082):315-8. PubMed ID: 16541068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial quantum noise interferometry in expanding ultracold atom clouds.
    Fölling S; Gerbier F; Widera A; Mandel O; Gericke T; Bloch I
    Nature; 2005 Mar; 434(7032):481-4. PubMed ID: 15791249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral magnetism and spontaneous spin Hall effect of interacting Bose superfluids.
    Li X; Natu SS; Paramekanti A; Das Sarma S
    Nat Commun; 2014 Oct; 5():5174. PubMed ID: 25300774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using photoemission spectroscopy to probe a strongly interacting Fermi gas.
    Stewart JT; Gaebler JP; Jin DS
    Nature; 2008 Aug; 454(7205):744-7. PubMed ID: 18685703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantum scattering interferometer.
    Hart RA; Xu X; Legere R; Gibble K
    Nature; 2007 Apr; 446(7138):892-5. PubMed ID: 17443182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locally critical quantum phase transitions in strongly correlated metals.
    Si Q; Rabello S; Ingersent K; Smith JL
    Nature; 2001 Oct; 413(6858):804-8. PubMed ID: 11677597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local quantum criticality in confined fermions on optical lattices.
    Rigol M; Muramatsu A; Batrouni GG; Scalettar RT
    Phys Rev Lett; 2003 Sep; 91(13):130403. PubMed ID: 14525290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilayer 3He: a simple two-dimensional heavy-fermion system with quantum criticality.
    Neumann M; Nyéki J; Cowan B; Saunders J
    Science; 2007 Sep; 317(5843):1356-9. PubMed ID: 17656686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal damping behavior of dipole oscillations of one-dimensional ultracold gases induced by quantum phase slips.
    Danshita I
    Phys Rev Lett; 2013 Jul; 111(2):025303. PubMed ID: 23889414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bose-Glass phases of ultracold atoms due to cavity backaction.
    Habibian H; Winter A; Paganelli S; Rieger H; Morigi G
    Phys Rev Lett; 2013 Feb; 110(7):075304. PubMed ID: 25166381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended Bose-Hubbard models with ultracold magnetic atoms.
    Baier S; Mark MJ; Petter D; Aikawa K; Chomaz L; Cai Z; Baranov M; Zoller P; Ferlaino F
    Science; 2016 Apr; 352(6282):201-5. PubMed ID: 27124454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.