These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Multisensory control of multimodal behavior: do the legs know what the tongue is doing? Cushman JD; Aharoni DB; Willers B; Ravassard P; Kees A; Vuong C; Popeney B; Arisaka K; Mehta MR PLoS One; 2013; 8(11):e80465. PubMed ID: 24224054 [TBL] [Abstract][Full Text] [Related]
4. Mongolian gerbils learn to navigate in complex virtual spaces. Thurley K; Henke J; Hermann J; Ludwig B; Tatarau C; Wätzig A; Herz AV; Grothe B; Leibold C Behav Brain Res; 2014 Jun; 266():161-8. PubMed ID: 24631394 [TBL] [Abstract][Full Text] [Related]
5. Novel Virtual Reality System for Auditory Tasks in Head-fixed Mice. Gao S; Webb J; Mridha Z; Banta A; Kemere C; McGinley M Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2925-2928. PubMed ID: 33018619 [TBL] [Abstract][Full Text] [Related]
6. Spatial relational learning and memory abilities do not differ between men and women in a real-world, open-field environment. Banta Lavenex P; Lavenex P Behav Brain Res; 2010 Feb; 207(1):125-37. PubMed ID: 19800920 [TBL] [Abstract][Full Text] [Related]
7. Virtual reality method to analyze visual recognition in mice. Young BK; Brennan JN; Wang P; Tian N PLoS One; 2018; 13(5):e0196563. PubMed ID: 29768429 [TBL] [Abstract][Full Text] [Related]
8. Rats are able to navigate in virtual environments. Hölscher C; Schnee A; Dahmen H; Setia L; Mallot HA J Exp Biol; 2005 Feb; 208(Pt 3):561-9. PubMed ID: 15671344 [TBL] [Abstract][Full Text] [Related]
9. Place-related neuronal activity in the monkey parahippocampal gyrus and hippocampal formation during virtual navigation. Furuya Y; Matsumoto J; Hori E; Boas CV; Tran AH; Shimada Y; Ono T; Nishijo H Hippocampus; 2014 Jan; 24(1):113-30. PubMed ID: 24123569 [TBL] [Abstract][Full Text] [Related]
10. Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality. Sato M; Kawano M; Mizuta K; Islam T; Lee MG; Hayashi Y eNeuro; 2017; 4(3):. PubMed ID: 28484738 [TBL] [Abstract][Full Text] [Related]
11. The Impact of Visual Cues, Reward, and Motor Feedback on the Representation of Behaviorally Relevant Spatial Locations in Primary Visual Cortex. Pakan JMP; Currie SP; Fischer L; Rochefort NL Cell Rep; 2018 Sep; 24(10):2521-2528. PubMed ID: 30184487 [TBL] [Abstract][Full Text] [Related]
16. Superior colliculus and active navigation: role of visual and non-visual cues in controlling cellular representations of space. Cooper BG; Miya DY; Mizumori SJ Hippocampus; 1998; 8(4):340-72. PubMed ID: 9744421 [TBL] [Abstract][Full Text] [Related]
17. The effects of overtraining in the Morris water maze on allocentric and egocentric learning strategies in rats. Kealy J; Diviney M; Kehoe E; McGonagle V; O'Shea A; Harvey D; Commins S Behav Brain Res; 2008 Oct; 192(2):259-63. PubMed ID: 18514924 [TBL] [Abstract][Full Text] [Related]
18. Effect of reference frames and number of cues available on the spatial orientation of males and females in a virtual memory task. Cánovas R; García RF; Cimadevilla JM Behav Brain Res; 2011 Jan; 216(1):116-21. PubMed ID: 20655953 [TBL] [Abstract][Full Text] [Related]
19. Gender differences in landmark learning for virtual navigation: the role of distance to a goal. Chamizo VD; Artigas AA; Sansa J; Banterla F Behav Processes; 2011 Sep; 88(1):20-6. PubMed ID: 21736927 [TBL] [Abstract][Full Text] [Related]
20. Facilitation of learning spatial relations among locations by visual cues: generality across spatial configurations. Sturz BR; Kelly DM; Brown MF Anim Cogn; 2010 Mar; 13(2):341-9. PubMed ID: 19777275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]