These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

905 related articles for article (PubMed ID: 22345607)

  • 21. FACT and the proteasome promote promoter chromatin disassembly and transcriptional initiation.
    Ransom M; Williams SK; Dechassa ML; Das C; Linger J; Adkins M; Liu C; Bartholomew B; Tyler JK
    J Biol Chem; 2009 Aug; 284(35):23461-71. PubMed ID: 19574230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systematic dissection of roles for chromatin regulators in a yeast stress response.
    Weiner A; Chen HV; Liu CL; Rahat A; Klien A; Soares L; Gudipati M; Pfeffner J; Regev A; Buratowski S; Pleiss JA; Friedman N; Rando OJ
    PLoS Biol; 2012; 10(7):e1001369. PubMed ID: 22912562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo.
    Fazzio TG; Gelbart ME; Tsukiyama T
    Mol Cell Biol; 2005 Nov; 25(21):9165-74. PubMed ID: 16227570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Common chromatin architecture, common chromatin remodeling, and common transcription kinetics of Adr1-dependent genes in Saccharomyces cerevisiae.
    Agricola E; Verdone L; Xella B; Di Mauro E; Caserta M
    Biochemistry; 2004 Jul; 43(27):8878-84. PubMed ID: 15236596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-resolution chromatin dynamics during a yeast stress response.
    Weiner A; Hsieh TH; Appleboim A; Chen HV; Rahat A; Amit I; Rando OJ; Friedman N
    Mol Cell; 2015 Apr; 58(2):371-86. PubMed ID: 25801168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange.
    Katan-Khaykovich Y; Struhl K
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1296-301. PubMed ID: 21220302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes.
    Rizzo JM; Mieczkowski PA; Buck MJ
    Nucleic Acids Res; 2011 Nov; 39(20):8803-19. PubMed ID: 21785133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordinated Action of Nap1 and RSC in Disassembly of Tandem Nucleosomes.
    Prasad R; D'Arcy S; Hada A; Luger K; Bartholomew B
    Mol Cell Biol; 2016 Sep; 36(17):2262-71. PubMed ID: 27273866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter.
    Reinke H; Hörz W
    Mol Cell; 2003 Jun; 11(6):1599-607. PubMed ID: 12820972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Histone H1 of Saccharomyces cerevisiae inhibits transcriptional silencing.
    Veron M; Zou Y; Yu Q; Bi X; Selmi A; Gilson E; Defossez PA
    Genetics; 2006 Jun; 173(2):579-87. PubMed ID: 16582449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular biology: genome under surveillance.
    Arndt KM
    Nature; 2007 Dec; 450(7172):959-60. PubMed ID: 18075570
    [No Abstract]   [Full Text] [Related]  

  • 32. Using genomics and proteomics to investigate mechanisms of transcriptional silencing in Saccharomyces cerevisiae.
    Gao L; Gross DS
    Brief Funct Genomic Proteomic; 2006 Dec; 5(4):280-8. PubMed ID: 17082210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae.
    Zawadzki KA; Morozov AV; Broach JR
    Mol Biol Cell; 2009 Aug; 20(15):3503-13. PubMed ID: 19494041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density.
    Zhao J; Herrera-Diaz J; Gross DS
    Mol Cell Biol; 2005 Oct; 25(20):8985-99. PubMed ID: 16199876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation of an activator-dependent, promoter-specific chromatin remodeling factor.
    Ehrensberger AH; Kornberg RD
    Proc Natl Acad Sci U S A; 2011 Jun; 108(25):10115-20. PubMed ID: 21646535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hyperacetylation of chromatin at the ADH2 promoter allows Adr1 to bind in repressed conditions.
    Verdone L; Wu J; van Riper K; Kacherovsky N; Vogelauer M; Young ET; Grunstein M; Di Mauro E; Caserta M
    EMBO J; 2002 Mar; 21(5):1101-11. PubMed ID: 11867538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative imaging of chromatin decompaction in living cells.
    Dultz E; Mancini R; Polles G; Vallotton P; Alber F; Weis K
    Mol Biol Cell; 2018 Jul; 29(13):1763-1777. PubMed ID: 29771637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Statistical mechanics of chromosomes: in vivo and in silico approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties.
    He Y; Lawrimore J; Cook D; Van Gorder EE; De Larimat SC; Adalsteinsson D; Forest MG; Bloom K
    Nucleic Acids Res; 2020 Nov; 48(20):11284-11303. PubMed ID: 33080019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The regulation of gene activity by histones and the histone deacetylase RPD3.
    Suka N; Carmen AA; Rundlett SE; Grunstein M
    Cold Spring Harb Symp Quant Biol; 1998; 63():391-9. PubMed ID: 10384304
    [No Abstract]   [Full Text] [Related]  

  • 40. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity.
    Papamichos-Chronakis M; Watanabe S; Rando OJ; Peterson CL
    Cell; 2011 Jan; 144(2):200-13. PubMed ID: 21241891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.