These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22345637)

  • 1. Protein-protein interactions as a proxy to monitor conformational changes and activation states of the tomato resistance protein I-2.
    Lukasik-Shreepaathy E; Vossen JH; Tameling WI; de Vroomen MJ; Cornelissen BJ; Takken FL
    J Exp Bot; 2012 May; 63(8):3047-60. PubMed ID: 22345637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes.
    Gonzalez-Cendales Y; Catanzariti AM; Baker B; Mcgrath DJ; Jones DA
    Mol Plant Pathol; 2016 Apr; 17(3):448-63. PubMed ID: 26177154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2.
    Van Ooijen G; Lukasik E; Van Den Burg HA; Vossen JH; Cornelissen BJ; Takken FL
    Plant J; 2010 Aug; 63(4):563-72. PubMed ID: 20497382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1.
    Catanzariti AM; Do HT; Bru P; de Sain M; Thatcher LF; Rep M; Jones DA
    Plant J; 2017 Mar; 89(6):1195-1209. PubMed ID: 27995670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The AVR2-SIX5 gene pair is required to activate I-2-mediated immunity in tomato.
    Ma L; Houterman PM; Gawehns F; Cao L; Sillo F; Richter H; Clavijo-Ortiz MJ; Schmidt SM; Boeren S; Vervoort J; Cornelissen BJ; Rep M; Takken FL
    New Phytol; 2015 Oct; 208(2):507-18. PubMed ID: 25967461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical interaction between nuclear accumulated CC-NB-ARC-LRR protein and WRKY64 promotes EDS1 dependent Fusarium wilt resistance in chickpea.
    Chakraborty J; Priya P; Dastidar SG; Das S
    Plant Sci; 2018 Nov; 276():111-133. PubMed ID: 30348309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SlBIR3 Negatively Regulates PAMP Responses and Cell Death in Tomato.
    Huang S; Nie S; Wang S; Liu J; Zhang Y; Wang X
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28902164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease.
    Catanzariti AM; Lim GTT; Jones DA
    New Phytol; 2015 Jul; 207(1):106-118. PubMed ID: 25740416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional dissection of differentially expressed tomato WRKY transcripts in host defense response against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici).
    Aamir M; Singh VK; Dubey MK; Kashyap SP; Zehra A; Upadhyay RS; Singh S
    PLoS One; 2018; 13(4):e0193922. PubMed ID: 29709017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.
    Bharti P; Jyoti P; Kapoor P; Sharma V; Shanmugam V; Yadav SK
    Mol Biotechnol; 2017 Aug; 59(8):343-352. PubMed ID: 28674943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcomplementation, but not physical association of the CC-NB-ARC and LRR domains of tomato R protein Mi-1.2 is altered by mutations in the ARC2 subdomain.
    van Ooijen G; Mayr G; Albrecht M; Cornelissen BJ; Takken FL
    Mol Plant; 2008 May; 1(3):401-10. PubMed ID: 19825549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain.
    Kavroulakis N; Ntougias S; Zervakis GI; Ehaliotis C; Haralampidis K; Papadopoulou KK
    J Exp Bot; 2007; 58(14):3853-64. PubMed ID: 18048373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Insights into the Role of Cysteine-Rich Peptides in Induced Resistance to
    Slezina MP; Istomina EA; Korostyleva TV; Kovtun AS; Kasianov AS; Konopkin AA; Shcherbakova LA; Odintsova TI
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato.
    Yang H; Sun Y; Wang H; Zhao T; Xu X; Jiang J; Li J
    BMC Plant Biol; 2021 Feb; 21(1):72. PubMed ID: 33530947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tomato xylem sap protein XSP10 is required for full susceptibility to Fusarium wilt disease.
    Krasikov V; Dekker HL; Rep M; Takken FL
    J Exp Bot; 2011 Jan; 62(3):963-73. PubMed ID: 20974736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein.
    de la Fuente van Bentem S; Vossen JH; de Vries KJ; van Wees S; Tameling WI; Dekker HL; de Koster CG; Haring MA; Takken FL; Cornelissen BJ
    Plant J; 2005 Jul; 43(2):284-98. PubMed ID: 15998314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins.
    Gabriëls SH; Vossen JH; Ekengren SK; van Ooijen G; Abd-El-Haliem AM; van den Berg GC; Rainey DY; Martin GB; Takken FL; de Wit PJ; Joosten MH
    Plant J; 2007 Apr; 50(1):14-28. PubMed ID: 17346268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl salicylate production in tomato affects biotic interactions.
    Ament K; Krasikov V; Allmann S; Rep M; Takken FL; Schuurink RC
    Plant J; 2010 Apr; 62(1):124-34. PubMed ID: 20059742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.
    Król P; Igielski R; Pollmann S; Kępczyńska E
    J Plant Physiol; 2015 May; 179():122-32. PubMed ID: 25867625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random mutagenesis of the nucleotide-binding domain of NRC1 (NB-LRR Required for Hypersensitive Response-Associated Cell Death-1), a downstream signalling nucleotide-binding, leucine-rich repeat (NB-LRR) protein, identifies gain-of-function mutations in the nucleotide-binding pocket.
    Sueldo DJ; Shimels M; Spiridon LN; Caldararu O; Petrescu AJ; Joosten MH; Tameling WI
    New Phytol; 2015 Oct; 208(1):210-23. PubMed ID: 26009937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.