These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 22346348)
1. A novel approach for the simultaneous analysis of common and rare variants in complex traits. Yuan A; Chen G; Zhou Y; Bentley A; Rotimi C Bioinform Biol Insights; 2012; 6():1-9. PubMed ID: 22346348 [TBL] [Abstract][Full Text] [Related]
2. GENOME-WIDE ASSOCIATION MAPPING AND RARE ALLELES: FROM POPULATION GENOMICS TO PERSONALIZED MEDICINE - Session Introduction. DE LA Vega FM; Bustamante CD; Leal SM Pac Symp Biocomput; 2011; ():74-5. PubMed ID: 21121034 [TBL] [Abstract][Full Text] [Related]
3. The power of regional heritability analysis for rare and common variant detection: simulations and application to eye biometrical traits. Uemoto Y; Pong-Wong R; Navarro P; Vitart V; Hayward C; Wilson JF; Rudan I; Campbell H; Hastie ND; Wright AF; Haley CS Front Genet; 2013; 4():232. PubMed ID: 24312116 [TBL] [Abstract][Full Text] [Related]
4. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach. Guo B; Wu B Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous Analysis of Common and Rare Variants in Complex Traits: Application to SNPs (SCARVAsnp). Chen G; Yuan A; Zhou Y; Bentley AR; Zhou J; Chen W; Shriner D; Adeyemo A; Rotimi CN Bioinform Biol Insights; 2012; 6():177-85. PubMed ID: 22904618 [TBL] [Abstract][Full Text] [Related]
6. Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data. Masotti M; Guo B; Wu B Biometrics; 2019 Dec; 75(4):1076-1085. PubMed ID: 31021400 [TBL] [Abstract][Full Text] [Related]
7. Regional heritability mapping and genome-wide association identify loci for complex growth, wood and disease resistance traits in Eucalyptus. Resende RT; Resende MD; Silva FF; Azevedo CF; Takahashi EK; Silva-Junior OB; Grattapaglia D New Phytol; 2017 Feb; 213(3):1287-1300. PubMed ID: 28079935 [TBL] [Abstract][Full Text] [Related]
8. Detecting X-linked common and rare variant effects in family-based sequencing studies. Turkmen AS; Lin S Genet Epidemiol; 2021 Feb; 45(1):36-45. PubMed ID: 32864779 [TBL] [Abstract][Full Text] [Related]
9. Rare variant association test with multiple phenotypes. Lee S; Won S; Kim YJ; Kim Y; ; Kim BJ; Park T Genet Epidemiol; 2017 Apr; 41(3):198-209. PubMed ID: 28039885 [TBL] [Abstract][Full Text] [Related]
10. GWASeq: targeted re-sequencing follow up to GWAS. Salomon MP; Li WL; Edlund CK; Morrison J; Fortini BK; Win AK; Conti DV; Thomas DC; Duggan D; Buchanan DD; Jenkins MA; Hopper JL; Gallinger S; Le Marchand L; Newcomb PA; Casey G; Marjoram P BMC Genomics; 2016 Mar; 17():176. PubMed ID: 26940994 [TBL] [Abstract][Full Text] [Related]
11. Utilizing mutual information for detecting rare and common variants associated with a categorical trait. Sun L; Wang C; Hu YQ PeerJ; 2016; 4():e2139. PubMed ID: 27350900 [TBL] [Abstract][Full Text] [Related]
12. Rare variant association studies: considerations, challenges and opportunities. Auer PL; Lettre G Genome Med; 2015; 7(1):16. PubMed ID: 25709717 [TBL] [Abstract][Full Text] [Related]
13. Type-2 diabetes-associated variants with cross-trait relevance: Post-GWAs strategies for biological function interpretation. Frau F; Crowther D; Ruetten H; Allebrandt KV Mol Genet Metab; 2017 May; 121(1):43-50. PubMed ID: 28385534 [TBL] [Abstract][Full Text] [Related]
14. To identify associations with rare variants, just WHaIT: Weighted haplotype and imputation-based tests. Li Y; Byrnes AE; Li M Am J Hum Genet; 2010 Nov; 87(5):728-35. PubMed ID: 21055717 [TBL] [Abstract][Full Text] [Related]
15. The Nature of Genetic Variation for Complex Traits Revealed by GWAS and Regional Heritability Mapping Analyses. Caballero A; Tenesa A; Keightley PD Genetics; 2015 Dec; 201(4):1601-13. PubMed ID: 26482794 [TBL] [Abstract][Full Text] [Related]
16. Mining the LIPG allelic spectrum reveals the contribution of rare and common regulatory variants to HDL cholesterol. Khetarpal SA; Edmondson AC; Raghavan A; Neeli H; Jin W; Badellino KO; Demissie S; Manning AK; DerOhannessian SL; Wolfe ML; Cupples LA; Li M; Kathiresan S; Rader DJ PLoS Genet; 2011 Dec; 7(12):e1002393. PubMed ID: 22174694 [TBL] [Abstract][Full Text] [Related]
17. Weighted selective collapsing strategy for detecting rare and common variants in genetic association study. Dai Y; Jiang R; Dong J BMC Genet; 2012 Feb; 13():7. PubMed ID: 22309429 [TBL] [Abstract][Full Text] [Related]
18. Multitrait genome association analysis identifies new susceptibility genes for human anthropometric variation in the GCAT cohort. Galván-Femenía I; Obón-Santacana M; Piñeyro D; Guindo-Martinez M; Duran X; Carreras A; Pluvinet R; Velasco J; Ramos L; Aussó S; Mercader JM; Puig L; Perucho M; Torrents D; Moreno V; Sumoy L; de Cid R J Med Genet; 2018 Nov; 55(11):765-778. PubMed ID: 30166351 [TBL] [Abstract][Full Text] [Related]
19. Finding the Sources of Missing Heritability within Rare Variants Through Simulation. Bandyopadhyay B; Chanda V; Wang Y Bioinform Biol Insights; 2017; 11():1177932217735096. PubMed ID: 29051702 [TBL] [Abstract][Full Text] [Related]
20. Powerful and efficient SNP-set association tests across multiple phenotypes using GWAS summary data. Guo B; Wu B Bioinformatics; 2019 Apr; 35(8):1366-1372. PubMed ID: 30239606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]