These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22346624)

  • 1. Intelligent sensing in dynamic environments using markov decision process.
    Nanayakkara T; Halgamuge MN; Sridhar P; Madni AM
    Sensors (Basel); 2011; 11(1):1229-42. PubMed ID: 22346624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.
    Mustapha I; Mohd Ali B; Rasid MF; Sali A; Mohamad H
    Sensors (Basel); 2015 Aug; 15(8):19783-818. PubMed ID: 26287191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Information-Theoretic Performance Analysis of Sensor Networks via Markov Modeling of Time Series Data.
    Li Y; Jha DK; Ray A; Wettergren TA; Yue Li ; Jha DK; Ray A; Wettergren TA; Wettergren TA; Li Y; Ray A; Jha DK
    IEEE Trans Cybern; 2018 Jun; 48(6):1898-1909. PubMed ID: 28693003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Event-Aware Cluster-Head Rotation Algorithm for Extending Lifetime of Wireless Sensor Network with Smart Nodes.
    Lewandowski M; Płaczek B
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Distributed Anti-Jamming Algorithm Based on Actor-Critic Countering Intelligent Malicious Jamming for WSN.
    Chen Y; Niu Y; Chen C; Zhou Q; Xiang P
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attention-Shared Multi-Agent Actor-Critic-Based Deep Reinforcement Learning Approach for Mobile Charging Dynamic Scheduling in Wireless Rechargeable Sensor Networks.
    Jiang C; Wang Z; Chen S; Li J; Wang H; Xiang J; Xiao W
    Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open-WiSe: a solar powered wireless sensor network platform.
    González A; Aquino R; Mata W; Ochoa A; Saldaña P; Edwards A
    Sensors (Basel); 2012; 12(6):8204-17. PubMed ID: 22969396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outage Probability Minimization for Energy Harvesting Cognitive Radio Sensor Networks.
    Zhang F; Jing T; Huo Y; Jiang K
    Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28125023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparison of Alternative Distributed Dynamic Cluster Formation Techniques for Industrial Wireless Sensor Networks.
    Gholami M; Brennan RW
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26751447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relocating Sensor Nodes to Maximize Cumulative Connected Coverage in Wireless Sensor Networks.
    Coskun V
    Sensors (Basel); 2008 Apr; 8(4):2792-2817. PubMed ID: 27879850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
    Wu F; Rüdiger C; Yuce MR
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28157148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks.
    Rahat AA; Everson RM; Fieldsend JE
    Evol Comput; 2015; 23(3):481-507. PubMed ID: 25950392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal Energy Resources Allocation Method of Wireless Sensor Networks for Intelligent Railway Systems.
    Bin S; Sun G
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing a wireless sensor network based on a proposed algorithm for healthcare purposes.
    Abbasi-Kesbi R; Asadi Z; Nikfarjam A
    Biomed Eng Lett; 2020 Feb; 10(1):163-170. PubMed ID: 32175136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks.
    Shi B; Wei W; Wang Y; Shu W
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27754405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classifier-Based Data Transmission Reduction in Wearable Sensor Network for Human Activity Monitoring.
    Lewandowski M; Płaczek B; Bernas M
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.
    Wen CY; Chen YC
    Sensors (Basel); 2009; 9(5):3908-41. PubMed ID: 22412343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LoRaWAN Battery-Free Wireless Sensors Network Designed for Structural Health Monitoring in the Construction Domain.
    Loubet G; Takacs A; Gardner E; De Luca A; Udrea F; Dragomirescu D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30925754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRCA: a fuzzy relevance-based cluster head selection algorithm for wireless mobile ad-hoc sensor networks.
    Lee C; Jeong T
    Sensors (Basel); 2011; 11(5):5383-401. PubMed ID: 22163905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Algorithms of Distributed Learning and Distributed Estimation about Intelligent Wireless Sensor Network.
    Tan F
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.