BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22346674)

  • 1. Electrochemical characterization of riboflavin-enhanced reduction of trinitrotoluene.
    Sumner JJ; Chu K
    Sensors (Basel); 2011; 11(11):10840-50. PubMed ID: 22346674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A glassy carbon electrode with electrodeposited silver nanoparticles for aptamer based voltammetric determination of trinitrotoluene using riboflavin as a redox probe.
    Roushani M; Shahdost-Fard F
    Mikrochim Acta; 2018 Nov; 185(12):558. PubMed ID: 30467783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disposable screen-printed sensors for the electrochemical detection of TNT and DNT.
    Caygill JS; Collyer SD; Holmes JL; Davis F; Higson SP
    Analyst; 2013 Jan; 138(1):346-52. PubMed ID: 23152954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing TNT and DNT groundwater contamination by compound-specific isotope analysis and 3H-3He groundwater dating: a case study in Portugal.
    Amaral HI; Fernandes J; Berg M; Schwarzenbach RP; Kipfer R
    Chemosphere; 2009 Oct; 77(6):805-12. PubMed ID: 19740509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of explosives using electrochemically reduced graphene.
    Chen TW; Sheng ZH; Wang K; Wang FB; Xia XH
    Chem Asian J; 2011 May; 6(5):1210-6. PubMed ID: 21387564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Determination of TNT, DNT, RDX, and HMX with Gold Nanoparticles/Poly(Carbazole-Aniline) Film-Modified Glassy Carbon Sensor Electrodes Imprinted for Molecular Recognition of Nitroaromatics and Nitramines.
    Sağlam Ş; Üzer A; Erçağ E; Apak R
    Anal Chem; 2018 Jun; 90(12):7364-7370. PubMed ID: 29786423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of photosensitizer riboflavin on the fate of 2,4,6-trinitrotoluene in a freshwater environment.
    Cui H; Hwang HM; Cook S; Zeng K
    Chemosphere; 2001 Aug; 44(4):621-5. PubMed ID: 11482649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor-based detection of 2,4-dinitrotoluene using modified three-dimensionally ordered macroporous carbon electrodes.
    Fierke MA; Olson EJ; Bühlmann P; Stein A
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4731-9. PubMed ID: 22905948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printed Electrodes for Detection of Nitroaromatic Explosives and Nerve Agents.
    Tan C; Nasir MZM; Ambrosi A; Pumera M
    Anal Chem; 2017 Sep; 89(17):8995-9001. PubMed ID: 28783323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical destruction of dinitrotoluene isomers and 2,4,6-trinitrotoluene in spent acid from toluene nitration process.
    Chen WS; Liang JS
    J Hazard Mater; 2009 Jan; 161(2-3):1017-23. PubMed ID: 18511190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mineralization of dinitrotoluenes and trinitrotoluene of spent acid in toluene nitration process by Fenton oxidation.
    Chen WS; Juan CN; Wei KM
    Chemosphere; 2005 Aug; 60(8):1072-9. PubMed ID: 15993154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobility and degradation of trinitrotoluene/metabolites in soil columns: effect of soil organic carbon content.
    Singh N; Hennecke D; Hoerner J; Koerdel W; Schaeffer A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):682-93. PubMed ID: 18444069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Denitration of 2,4,6-trinitrotoluene by Pseudomonas savastanoi.
    Martin JL; Comfort SD; Shea PJ; Kokjohn TA; Drijber RA
    Can J Microbiol; 1997 May; 43(5):447-55. PubMed ID: 9198535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation and physiological response mechanism of a bacterial strain to 2,4,6-trinitrotoluene contamination.
    Yang X; Lai JL; Li J; Zhang Y; Luo XG; Li ZG
    Chemosphere; 2021 May; 270():129280. PubMed ID: 33418226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copolypeptide-doped polyaniline nanofibers for electrochemical detection of ultratrace trinitrotoluene.
    Wang F; Wang W; Liu B; Wang Z; Zhang Z
    Talanta; 2009 Jul; 79(2):376-82. PubMed ID: 19559893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive investigations of kinetics of alkaline hydrolysis of TNT (2,4,6-trinitrotoluene), DNT (2,4-dinitrotoluene), and DNAN (2,4-dinitroanisole).
    Sviatenko L; Kinney C; Gorb L; Hill FC; Bednar AJ; Okovytyy S; Leszczynski J
    Environ Sci Technol; 2014 Sep; 48(17):10465-74. PubMed ID: 25083594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene by an Escherichia coli bioreporter: performance enhancement by directed evolution.
    Yagur-Kroll S; Amiel E; Rosen R; Belkin S
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7177-88. PubMed ID: 25981994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of advanced oxidation processes for TNT removal: A review.
    Ayoub K; van Hullebusch ED; Cassir M; Bermond A
    J Hazard Mater; 2010 Jun; 178(1-3):10-28. PubMed ID: 20347218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Square wave voltammetry of TNT at gold electrodes modified with self-assembled monolayers containing aromatic structures.
    Trammell SA; Zabetakis D; Moore M; Verbarg J; Stenger DA
    PLoS One; 2014; 9(12):e115966. PubMed ID: 25549081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decomposition of nitrotoluenes from trinitrotoluene manufacturing process by Electro-Fenton oxidation.
    Chen WS; Liang JS
    Chemosphere; 2008 Jun; 72(4):601-7. PubMed ID: 18433833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.