BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22346674)

  • 21. Recovery of nitrotoluenes in wastewater by solvent extraction.
    Chen WS; Chiang WC; Lai CC
    J Hazard Mater; 2007 Jun; 145(1-2):23-9. PubMed ID: 17141411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on aerobic degradation of 2,4,6-trinitrotoluene (TNT) using Pseudarthrobacter chlorophenolicus collected from the contaminated site.
    Lamba J; Anand S; Dutta J; Chatterjee S; Nagar S; Celin SM; Rai PK
    Environ Monit Assess; 2021 Jan; 193(2):80. PubMed ID: 33486600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene.
    Yagur-Kroll S; Lalush C; Rosen R; Bachar N; Moskovitz Y; Belkin S
    Appl Microbiol Biotechnol; 2014 Jan; 98(2):885-95. PubMed ID: 23615740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phototransformation of 2,4,6-trinitrotoluene: sensitized by riboflavin under different irradiation spectral range.
    Yang X; Zhao X; Hwang HM
    J Hazard Mater; 2007 May; 143(1-2):271-6. PubMed ID: 17049731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective electrochemical detection of 2,4,6-trinitrotoluene (TNT) in water based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin-modified glassy carbon electrode.
    Mahmoud KA; Abdel-Wahab A; Zourob M
    Water Sci Technol; 2015; 72(10):1780-8. PubMed ID: 26540539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles.
    Goh MS; Pumera M
    Anal Bioanal Chem; 2011 Jan; 399(1):127-31. PubMed ID: 21046081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transformation of TNT, 2,4-DNT, and PETN by Raoultella planticola M30b and Rhizobium radiobacter M109 and exploration of the associated enzymes.
    Avellaneda H; Arbeli Z; Teran W; Roldan F
    World J Microbiol Biotechnol; 2020 Nov; 36(12):190. PubMed ID: 33247357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytodetoxification of the environmental pollutant and explosive 2,4,6-trinitrotoluene.
    Rylott EL; Gunning V; Tzafestas K; Sparrow H; Johnston EJ; Brentnall AS; Potts JR; Bruce NC
    Plant Signal Behav; 2015; 10(1):e977714. PubMed ID: 25654165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing an ultra-sensitive aptasensor based on an AgNPs/thiol-GQD nanocomposite for TNT detection at femtomolar levels using the electrochemical oxidation of Rutin as a redox probe.
    Shahdost-Fard F; Roushani M
    Biosens Bioelectron; 2017 Jan; 87():724-731. PubMed ID: 27649328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon.
    Zang J; Guo CX; Hu F; Yu L; Li CM
    Anal Chim Acta; 2011 Jan; 683(2):187-91. PubMed ID: 21167969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated explosive preconcentrator and electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor.
    Cizek K; Prior C; Thammakhet C; Galik M; Linker K; Tsui R; Cagan A; Wake J; La Belle J; Wang J
    Anal Chim Acta; 2010 Feb; 661(1):117-21. PubMed ID: 20113724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ionic liquid-graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene.
    Guo S; Wen D; Zhai Y; Dong S; Wang E
    Biosens Bioelectron; 2011 Apr; 26(8):3475-81. PubMed ID: 21333522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exposure to nitroaromatic explosives and health effects during disposal of military waste.
    Letzel S; Göen T; Bader M; Angerer J; Kraus T
    Occup Environ Med; 2003 Jul; 60(7):483-8. PubMed ID: 12819281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequential biodegradation of TNT, RDX and HMX in a mixture.
    Sagi-Ben Moshe S; Ronen Z; Dahan O; Weisbrod N; Groisman L; Adar E; Nativ R
    Environ Pollut; 2009; 157(8-9):2231-8. PubMed ID: 19428165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerobic Transformation of 2,4-Dinitrotoluene by Escherichia coli and Its Implications for the Detection of Trace Explosives.
    Shemer B; Yagur-Kroll S; Hazan C; Belkin S
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of soil organic matter chemistry on sorption of trinitrotoluene and 2,4-dinitrotoluene.
    Singh N; Berns AE; Hennecke D; Hoerner J; Koerdel W; Schaeffer A
    J Hazard Mater; 2010 Jan; 173(1-3):343-8. PubMed ID: 19748732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peptide-Functionalized Quantum Dots for Rapid Label-Free Sensing of 2,4,6-Trinitrotoluene.
    Komikawa T; Tanaka M; Tamang A; Evans SD; Critchley K; Okochi M
    Bioconjug Chem; 2020 May; 31(5):1400-1407. PubMed ID: 32281783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing cytotoxicity of photosensitized transformation products of 2,4,6-trinitrotoluene (TNT) and atrazine with freshwater microbial assemblages.
    Zeng K; Hwang HM; Zhang Y; Cook S
    Environ Toxicol; 2004 Oct; 19(5):490-6. PubMed ID: 15352265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoluminescence detection of 2,4,6-trinitrotoluene (TNT) binding on diatom frustule biosilica functionalized with an anti-TNT monoclonal antibody fragment.
    Zhen L; Ford N; Gale DK; Roesijadi G; Rorrer GL
    Biosens Bioelectron; 2016 May; 79():742-8. PubMed ID: 26774089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoporous organosilicas as preconcentration materials for the electrochemical detection of trinitrotoluene.
    Trammell SA; Zeinali M; Melde BJ; Charles PT; Velez FL; Dinderman MA; Kusterbeck A; Markowitz MA
    Anal Chem; 2008 Jun; 80(12):4627-33. PubMed ID: 18470994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.