These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 22346685)
1. System-level biochip for impedance sensing and programmable manipulation of bladder cancer cells. Chuang CH; Huang YW; Wu YT Sensors (Basel); 2011; 11(11):11021-35. PubMed ID: 22346685 [TBL] [Abstract][Full Text] [Related]
2. Dielectrophoretic chip with multilayer electrodes and micro-cavity array for trapping and programmably releasing single cells. Chuang CH; Huang YW; Wu YT Biomed Microdevices; 2012 Apr; 14(2):271-8. PubMed ID: 22072154 [TBL] [Abstract][Full Text] [Related]
3. Multi-step manipulations of PMMA submicron particles using dielectrophoresis. Chuang CH; Huang YW Electrophoresis; 2013 Dec; 34(22-23):3111-8. PubMed ID: 24038067 [TBL] [Abstract][Full Text] [Related]
4. Lab on a chip for multiplexed immunoassays to detect bladder cancer using multifunctional dielectrophoretic manipulations. Chuang CH; Wu TF; Chen CH; Chang KC; Ju JW; Huang YW; Van Nhan V Lab Chip; 2015 Jul; 15(14):3056-64. PubMed ID: 26087450 [TBL] [Abstract][Full Text] [Related]
5. AC dielectrophoretic manipulation and electroporation of vaccinia virus using carbon nanoelectrode arrays. Madiyar FR; Haller SL; Farooq O; Rothenburg S; Culbertson C; Li J Electrophoresis; 2017 Jun; 38(11):1515-1525. PubMed ID: 28211116 [TBL] [Abstract][Full Text] [Related]
6. Enhancing of intensity of fluorescence by DEP manipulations of polyaniline-coated Al₂O₃ nanoparticles for immunosensing. Chuang CH; Wu HP; Huang YW; Chen CH Biosens Bioelectron; 2013 Oct; 48():158-64. PubMed ID: 23680934 [TBL] [Abstract][Full Text] [Related]
7. Immunosensor for the ultrasensitive and quantitative detection of bladder cancer in point of care testing. Chuang CH; Du YC; Wu TF; Chen CH; Lee DH; Chen SM; Huang TC; Wu HP; Shaikh MO Biosens Bioelectron; 2016 Oct; 84():126-32. PubMed ID: 26777732 [TBL] [Abstract][Full Text] [Related]
8. Enhancing dielectrophoresis effect through novel electrode geometry. Lin JT; Yeow JT Biomed Microdevices; 2007 Dec; 9(6):823-31. PubMed ID: 17574532 [TBL] [Abstract][Full Text] [Related]
9. Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Fan SK; Huang PW; Wang TT; Peng YH Lab Chip; 2008 Aug; 8(8):1325-31. PubMed ID: 18651075 [TBL] [Abstract][Full Text] [Related]
10. Dielectrophoretic lab-on-CMOS platform for trapping and manipulation of cells. Park K; Kabiri S; Sonkusale S Biomed Microdevices; 2016 Feb; 18(1):6. PubMed ID: 26780441 [TBL] [Abstract][Full Text] [Related]
11. Characterizing Esophageal Cancerous Cells at Different Stages Using the Dielectrophoretic Impedance Measurement Method in a Microchip. Wang HC; Nguyen NV; Lin RY; Jen CP Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28481265 [TBL] [Abstract][Full Text] [Related]
12. On the design and optimization of micro-fluidic dielectrophoretic devices: a dynamic simulation study. Li H; Bashir R Biomed Microdevices; 2004 Dec; 6(4):289-95. PubMed ID: 15548876 [TBL] [Abstract][Full Text] [Related]
13. MEMS impedance flow cytometry designs for effective manipulation of micro entities in health care applications. Kumar M; Yadav S; Kumar A; Sharma NN; Akhtar J; Singh K Biosens Bioelectron; 2019 Oct; 142():111526. PubMed ID: 31362203 [TBL] [Abstract][Full Text] [Related]
14. Impedance detection integrated with dielectrophoresis enrichment platform for lung circulating tumor cells in a microfluidic channel. Nguyen NV; Jen CP Biosens Bioelectron; 2018 Dec; 121():10-18. PubMed ID: 30189335 [TBL] [Abstract][Full Text] [Related]
15. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Wiklund M; Günther C; Lemor R; Jäger M; Fuhr G; Hertz HM Lab Chip; 2006 Dec; 6(12):1537-44. PubMed ID: 17203158 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Choi S; Park JK Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274 [TBL] [Abstract][Full Text] [Related]
17. A feasibility study for enrichment of highly aggressive cancer subpopulations by their biophysical properties via dielectrophoresis enhanced with synergistic fluid flow. Douglas TA; Cemazar J; Balani N; Sweeney DC; Schmelz EM; Davalos RV Electrophoresis; 2017 Jun; 38(11):1507-1514. PubMed ID: 28342274 [TBL] [Abstract][Full Text] [Related]
18. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Ho CT; Lin RZ; Chang WY; Chang HY; Liu CH Lab Chip; 2006 Jun; 6(6):724-34. PubMed ID: 16738722 [TBL] [Abstract][Full Text] [Related]