These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22346742)

  • 21. Gene expression of stretch-activated channels and mechanoelectric feedback in the heart.
    Kelly D; Mackenzie L; Hunter P; Smaill B; Saint DA
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):642-8. PubMed ID: 16789934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects.
    Cherubini C; Filippi S; Nardinocchi P; Teresi L
    Prog Biophys Mol Biol; 2008; 97(2-3):562-73. PubMed ID: 18353430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm.
    Quinn TA; Kohl P
    Physiol Rev; 2021 Jan; 101(1):37-92. PubMed ID: 32380895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fibroblast mechanotransduction network predicts targets for mechano-adaptive infarct therapies.
    Rogers JD; Richardson WJ
    Elife; 2022 Feb; 11():. PubMed ID: 35138248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determinants of biventricular cardiac function: a mathematical model study on geometry and myofiber orientation.
    Pluijmert M; Delhaas T; de la Parra AF; Kroon W; Prinzen FW; Bovendeerd PH
    Biomech Model Mechanobiol; 2017 Apr; 16(2):721-729. PubMed ID: 27581324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Mechanoelectrical feedback in the healthy heart and in the heart with pathologies].
    Kamkin AG; Kiseleva IS
    Usp Fiziol Nauk; 2000; 31(2):51-78. PubMed ID: 10822834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micromechanical regulation in cardiac myocytes and fibroblasts: implications for tissue remodeling.
    Curtis MW; Russell B
    Pflugers Arch; 2011 Jul; 462(1):105-17. PubMed ID: 21308471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo validation of longitudinal-circumferential area change ratio to estimate myofiber shortening in the heart.
    Ashikaga H; Omens JH
    IEEE Trans Biomed Eng; 2012 May; 59(5):1391-7. PubMed ID: 22345526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A model approach to the adaptation of cardiac structure by mechanical feedback in the environment of the cell.
    Arts T; Prinzen FW; Snoeckx LH; Reneman RS
    Adv Exp Med Biol; 1995; 382():217-28. PubMed ID: 8540398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering mechanics for successive states in canine left ventricular myocardium. I. Cavity and wall geometry.
    Streeter DD; Hanna WT
    Circ Res; 1973 Dec; 33(6):639-55. PubMed ID: 4762006
    [No Abstract]   [Full Text] [Related]  

  • 31. Interplay between cardiac function and heart development.
    Andrés-Delgado L; Mercader N
    Biochim Biophys Acta; 2016 Jul; 1863(7 Pt B):1707-16. PubMed ID: 26952935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-wall segment (TriSeg) model describing mechanics and hemodynamics of ventricular interaction.
    Lumens J; Delhaas T; Kirn B; Arts T
    Ann Biomed Eng; 2009 Nov; 37(11):2234-55. PubMed ID: 19718527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Models of cardiac electromechanics based on individual hearts imaging data: image-based electromechanical models of the heart.
    Gurev V; Lee T; Constantino J; Arevalo H; Trayanova NA
    Biomech Model Mechanobiol; 2011 Jun; 10(3):295-306. PubMed ID: 20589408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of load on transmural differences in contraction of isolated mouse ventricular cardiomyocytes.
    Khokhlova A; Iribe G; Katsnelson L; Naruse K; Solovyova O
    J Mol Cell Cardiol; 2018 Jan; 114():276-287. PubMed ID: 29217431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new integrated method for analyzing heart mechanics using a cell-hemodynamics-autonomic nerve control coupled model of the cardiovascular system.
    Shim EB; Jun HM; Leem CH; Matusuoka S; Noma A
    Prog Biophys Mol Biol; 2008; 96(1-3):44-59. PubMed ID: 17904205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aortic pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses.
    Nguyen PH; Tuzun E; Quick CM
    Am J Physiol Regul Integr Comp Physiol; 2016 Sep; 311(3):R522-31. PubMed ID: 27306830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of laminar myofiber architecture to load-dependent changes in mechanics of LV myocardium.
    Takayama Y; Costa KD; Covell JW
    Am J Physiol Heart Circ Physiol; 2002 Apr; 282(4):H1510-20. PubMed ID: 11893589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rabbit models of cardiac mechano-electric and mechano-mechanical coupling.
    Quinn TA; Kohl P
    Prog Biophys Mol Biol; 2016 Jul; 121(2):110-22. PubMed ID: 27208698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intercellular and extracellular mechanotransduction in cardiac myocytes.
    Kresh JY; Chopra A
    Pflugers Arch; 2011 Jul; 462(1):75-87. PubMed ID: 21437600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell cultures as models of cardiac mechanoelectric feedback.
    Zhang Y; Sekar RB; McCulloch AD; Tung L
    Prog Biophys Mol Biol; 2008; 97(2-3):367-82. PubMed ID: 18384846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.