These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22347151)

  • 1. Robust Working Memory in an Asynchronously Spiking Neural Network Realized with Neuromorphic VLSI.
    Giulioni M; Camilleri P; Mattia M; Dante V; Braun J; Del Giudice P
    Front Neurosci; 2011; 5():149. PubMed ID: 22347151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems.
    Giulioni M; Corradi F; Dante V; del Giudice P
    Sci Rep; 2015 Oct; 5():14730. PubMed ID: 26463272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensating Inhomogeneities of Neuromorphic VLSI Devices Via Short-Term Synaptic Plasticity.
    Bill J; Schuch K; Brüderle D; Schemmel J; Maass W; Meier K
    Front Comput Neurosci; 2010; 4():129. PubMed ID: 21031027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mean-driven and fluctuation-driven persistent activity in recurrent networks.
    Renart A; Moreno-Bote R; Wang XJ; Parga N
    Neural Comput; 2007 Jan; 19(1):1-46. PubMed ID: 17134316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organizing Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields.
    Kreiser R; Aathmani D; Qiao N; Indiveri G; Sandamirskaya Y
    Front Neurosci; 2018; 12():717. PubMed ID: 30524218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of self-sustained asynchronous-irregular activity in random networks of spiking neurons with strong synapses.
    Kriener B; Enger H; Tetzlaff T; Plesser HE; Gewaltig MO; Einevoll GT
    Front Comput Neurosci; 2014; 8():136. PubMed ID: 25400575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory.
    Chicca E; Badoni D; Dante V; D'Andreagiovanni M; Salina G; Carota L; Fusi S; Del Giudice P
    IEEE Trans Neural Netw; 2003; 14(5):1297-307. PubMed ID: 18244578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromorphic Dynamical Synapses With Reconfigurable Voltage-Gated Kinetics.
    Wang J; Cauwenberghs G; Broccard FD
    IEEE Trans Biomed Eng; 2020 Jul; 67(7):1831-1840. PubMed ID: 31647418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of Competition between Subnetworks of Spiking Neuronal Networks in the Balanced State.
    Lagzi F; Rotter S
    PLoS One; 2015; 10(9):e0138947. PubMed ID: 26407178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust computation with rhythmic spike patterns.
    Frady EP; Sommer FT
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):18050-18059. PubMed ID: 31431524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of synchronous spiking in two interacting populations of excitatory and inhibitory quadratic integrate-and-fire neurons.
    Pyragas K; Fedaravičius AP; Pyragienė T
    Phys Rev E; 2021 Jul; 104(1-1):014203. PubMed ID: 34412351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drifting States and Synchronization Induced Chaos in Autonomous Networks of Excitable Neurons.
    Echeveste R; Gros C
    Front Comput Neurosci; 2016; 10():98. PubMed ID: 27708572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reanalysis of "Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons".
    Engelken R; Farkhooi F; Hansel D; van Vreeswijk C; Wolf F
    F1000Res; 2016; 5():2043. PubMed ID: 27746905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Spiking Neuron and Population Model Based on the Growth Transform Dynamical System.
    Gangopadhyay A; Mehta D; Chakrabartty S
    Front Neurosci; 2020; 14():425. PubMed ID: 32477051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromorphic hardware databases for exploring structure-function relationships in the brain.
    Breslin C; O'Lenskie A
    Philos Trans R Soc Lond B Biol Sci; 2001 Aug; 356(1412):1249-58. PubMed ID: 11545701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Near-Optimal Bayesian Integration to Neuromorphic Hardware: A Neural Network Model of Multisensory Integration.
    Oess T; Löhr MPR; Schmid D; Ernst MO; Neumann H
    Front Neurorobot; 2020; 14():29. PubMed ID: 32499692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical attractor network dynamics with diluted connectivity.
    Rolls ET; Webb TJ
    Brain Res; 2012 Jan; 1434():212-25. PubMed ID: 21875702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Background-activity-dependent properties of a network model for working memory that incorporates cellular bistability.
    Fall CP; Lewis TJ; Rinzel J
    Biol Cybern; 2005 Aug; 93(2):109-18. PubMed ID: 15806392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI.
    Yu T; Sejnowski TJ; Cauwenberghs G
    IEEE Trans Biomed Circuits Syst; 2011 Oct; 5(5):420-9. PubMed ID: 22227949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons.
    Tuckwell HC
    J Physiol Paris; 2006; 100(1-3):88-99. PubMed ID: 17064883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.