These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 22347164)

  • 1. Acetylcholine-based entropy in response selection: a model of how striatal interneurons modulate exploration, exploitation, and response variability in decision-making.
    Stocco A
    Front Neurosci; 2012; 6():18. PubMed ID: 22347164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actor-critic models of the basal ganglia: new anatomical and computational perspectives.
    Joel D; Niv Y; Ruppin E
    Neural Netw; 2002; 15(4-6):535-47. PubMed ID: 12371510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopaminergic Control of the Exploration-Exploitation Trade-Off via the Basal Ganglia.
    Humphries MD; Khamassi M; Gurney K
    Front Neurosci; 2012; 6():9. PubMed ID: 22347155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of reinforcement learning and optimal decision-making theories of the basal ganglia.
    Bogacz R; Larsen T
    Neural Comput; 2011 Apr; 23(4):817-51. PubMed ID: 21222528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Believer-Skeptic Meets Actor-Critic: Rethinking the Role of Basal Ganglia Pathways during Decision-Making and Reinforcement Learning.
    Dunovan K; Verstynen T
    Front Neurosci; 2016; 10():106. PubMed ID: 27047328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix.
    Wickens JR; Budd CS; Hyland BI; Arbuthnott GW
    Ann N Y Acad Sci; 2007 May; 1104():192-212. PubMed ID: 17416920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalization of value in reinforcement learning by humans.
    Wimmer GE; Daw ND; Shohamy D
    Eur J Neurosci; 2012 Apr; 35(7):1092-104. PubMed ID: 22487039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A possible mechanism of participation of dopaminergic cells and striatal cholinergic interneurons in the conditioned selection of motor activity].
    Sil'kis IG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2004; 54(6):734-49. PubMed ID: 15658038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum.
    Matamales M; Götz J; Bertran-Gonzalez J
    PLoS One; 2016; 11(6):e0157682. PubMed ID: 27314496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spiking Basal Ganglia model of synchrony, exploration and decision making.
    Mandali A; Rengaswamy M; Chakravarthy VS; Moustafa AA
    Front Neurosci; 2015; 9():191. PubMed ID: 26074761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Avian Basal Ganglia Are a Source of Rapid Behavioral Variation That Enables Vocal Motor Exploration.
    Kojima S; Kao MH; Doupe AJ; Brainard MS
    J Neurosci; 2018 Nov; 38(45):9635-9647. PubMed ID: 30249800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopamine induced switch in the subthreshold dynamics of the striatal cholinergic interneurons: a numerical study.
    Szalisznyó K; Müller L
    J Theor Biol; 2009 Feb; 256(4):547-60. PubMed ID: 18976672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible mechanisms of the involvement of dopaminergic cells and cholinergic interneurons in the striatum in the conditioned-reflex selection of motor activity.
    Sil'kis IG
    Neurosci Behav Physiol; 2006 Feb; 36(2):163-75. PubMed ID: 16380830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning.
    Franklin NT; Frank MJ
    Elife; 2015 Dec; 4():. PubMed ID: 26705698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Striatal cholinergic interneurons and cortico-striatal synaptic plasticity in health and disease.
    Deffains M; Bergman H
    Mov Disord; 2015 Jul; 30(8):1014-25. PubMed ID: 26095280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decision making under uncertainty: a neural model based on partially observable markov decision processes.
    Rao RP
    Front Comput Neurosci; 2010; 4():146. PubMed ID: 21152255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tonic dopamine, uncertainty and basal ganglia action selection.
    Gilbertson T; Steele D
    Neuroscience; 2021 Jul; 466():109-124. PubMed ID: 34015370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting psychosis across diagnostic boundaries: Behavioral and computational modeling evidence for impaired reinforcement learning in schizophrenia and bipolar disorder with a history of psychosis.
    Strauss GP; Thaler NS; Matveeva TM; Vogel SJ; Sutton GP; Lee BG; Allen DN
    J Abnorm Psychol; 2015 Aug; 124(3):697-708. PubMed ID: 25894442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dopamine-acetylcholine cascade: simulating learned and lesion-induced behavior of striatal cholinergic interneurons.
    Tan CO; Bullock D
    J Neurophysiol; 2008 Oct; 100(4):2409-21. PubMed ID: 18715897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.