BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22347782)

  • 1. Comparison of methods for identifying differentially expressed genes across multiple conditions from microarray data.
    Tan Y; Liu Y
    Bioinformation; 2011; 7(8):400-4. PubMed ID: 22347782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Work efficiency: a new criterion for comprehensive comparison and evaluation of statistical methods in large-scale identification of differentially expressed genes.
    Tan YD
    Genomics; 2011 Nov; 98(5):390-9. PubMed ID: 21741470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general method for accurate estimation of false discovery rates in identification of differentially expressed genes.
    Tan YD; Xu H
    Bioinformatics; 2014 Jul; 30(14):2018-25. PubMed ID: 24632499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filtering for increased power for microarray data analysis.
    Hackstadt AJ; Hess AM
    BMC Bioinformatics; 2009 Jan; 10():11. PubMed ID: 19133141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying differentially expressed genes using false discovery rate controlling procedures.
    Reiner A; Yekutieli D; Benjamini Y
    Bioinformatics; 2003 Feb; 19(3):368-75. PubMed ID: 12584122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting differential expression in microarray data: comparison of optimal procedures.
    Perelman E; Ploner A; Calza S; Pawitan Y
    BMC Bioinformatics; 2007 Jan; 8():28. PubMed ID: 17257426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation on performance of Significance Analysis of Microarray (SAM) for the comparisons of several treatments with one control in the presence of small-variance genes.
    Lin D; Shkedy Z; Burzykowski T; Ion R; Göhlmann HW; Bondt AD; Perer T; Geerts T; Van den Wyngaert I; Bijnens L
    Biom J; 2008 Oct; 50(5):801-23. PubMed ID: 18932139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the false discovery rate using mixed normal distribution for identifying differentially expressed genes in microarray data analysis.
    Hirakawa A; Sato Y; Sozu T; Hamada C; Yoshimura I
    Cancer Inform; 2008 Jan; 3():140-8. PubMed ID: 19455258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ranking analysis of F-statistics for microarray data.
    Tan YD; Fornage M; Xu H
    BMC Bioinformatics; 2008 Mar; 9():142. PubMed ID: 18325100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new test statistic based on shrunken sample variance for identifying differentially expressed genes in small microarray experiments.
    Hirakawa A; Sato Y; Hamada C; Yoshimura I
    Bioinform Biol Insights; 2008 Feb; 2():145-56. PubMed ID: 19812772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified framework for finding differentially expressed genes from microarray experiments.
    Shaik JS; Yeasin M
    BMC Bioinformatics; 2007 Sep; 8():347. PubMed ID: 17877806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data.
    Jain N; Cho H; O'Connell M; Lee JK
    BMC Bioinformatics; 2005 Jul; 6():187. PubMed ID: 16042779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ranking analysis of microarray data: a powerful method for identifying differentially expressed genes.
    Tan YD; Fornage M; Fu YX
    Genomics; 2006 Dec; 88(6):846-854. PubMed ID: 16979869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive evaluation of SAM, the SAM R-package and a simple modification to improve its performance.
    Zhang S
    BMC Bioinformatics; 2007 Jun; 8():230. PubMed ID: 17603887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources of variation in false discovery rate estimation include sample size, correlation, and inherent differences between groups.
    Zhang J; Coombes KR
    BMC Bioinformatics; 2012; 13 Suppl 13(Suppl 13):S1. PubMed ID: 23320794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data.
    Shedden K; Chen W; Kuick R; Ghosh D; Macdonald J; Cho KR; Giordano TJ; Gruber SB; Fearon ER; Taylor JM; Hanash S
    BMC Bioinformatics; 2005 Feb; 6():26. PubMed ID: 15705192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifying the false discovery rate procedure based on the information theory under arbitrary correlation structure and its performance in high-dimensional genomic data.
    Rastaghi S; Saki A; Tabesh H
    BMC Bioinformatics; 2024 Feb; 25(1):57. PubMed ID: 38317067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An extended data mining method for identifying differentially expressed assay-specific signatures in functional genomic studies.
    Rollins DK; Teh A
    BioData Min; 2010 Dec; 3(1):11. PubMed ID: 21162755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The optimal discovery procedure for large-scale significance testing, with applications to comparative microarray experiments.
    Storey JD; Dai JY; Leek JT
    Biostatistics; 2007 Apr; 8(2):414-32. PubMed ID: 16928955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of differentially expressed genes using multi-resolution wavelet transformation analysis combined with SAM.
    Wu Y; Zhang L; Liu L; Zhang Y; Yi D
    Gene; 2012 Nov; 509(2):302-8. PubMed ID: 22906473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.