These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 2234787)

  • 41. Different regulation of T-box genes Tbx4 and Tbx5 during limb development and limb regeneration.
    Khan P; Linkhart B; Simon HG
    Dev Biol; 2002 Oct; 250(2):383-92. PubMed ID: 12376111
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Test of a model for the effects of retinoic acid on urodele limb regeneration.
    Ludolph DC; Cameron JA; Stocum DL
    Dev Dyn; 1993 Oct; 198(2):77-85. PubMed ID: 8305708
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tissue inhibitor of metalloproteinase 1 regulates matrix metalloproteinase activity during newt limb regeneration.
    Stevenson TJ; Vinarsky V; Atkinson DL; Keating MT; Odelberg SJ
    Dev Dyn; 2006 Mar; 235(3):606-16. PubMed ID: 16372340
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Successful myoblast transplantation in primates depends on appropriate cell delivery and induction of regeneration in the host muscle.
    Skuk D; Roy B; Goulet M; Tremblay JP
    Exp Neurol; 1999 Jan; 155(1):22-30. PubMed ID: 9918701
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Retinoic acid and limb pattern formation.
    Bryant SV; Gardiner DM
    Prog Clin Biol Res; 1993; 383B():759-68. PubMed ID: 8115391
    [No Abstract]   [Full Text] [Related]  

  • 46. Slow and fast muscle fibers are preferentially derived from myoblasts migrating into the chick limb bud at different developmental times.
    Van Swearingen J; Lance-Jones C
    Dev Biol; 1995 Aug; 170(2):321-37. PubMed ID: 7649366
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bridging the regeneration gap: genetic insights from diverse animal models.
    Sánchez Alvarado A; Tsonis PA
    Nat Rev Genet; 2006 Nov; 7(11):873-84. PubMed ID: 17047686
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pattern discontinuity, polarity and directional intercalation in axolotl limbs.
    Muneoka K; Holler-Dinsmore GV; Bryant SV
    J Embryol Exp Morphol; 1986 Apr; 93():51-72. PubMed ID: 3734687
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The age-related characteristics of skeletal muscle regeneration in guinea pigs].
    Buliakova NV
    Dokl Akad Nauk SSSR; 1990; 315(4):977-81. PubMed ID: 2097138
    [No Abstract]   [Full Text] [Related]  

  • 50. A critical role for thrombin in vertebrate lens regeneration.
    Imokawa Y; Simon A; Brockes JP
    Philos Trans R Soc Lond B Biol Sci; 2004 May; 359(1445):765-76. PubMed ID: 15293804
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence for dedifferentiation and metaplasia in amphibian limb regeneration from inheritance of DNA methylation.
    Casimir CM; Gates PB; Patient RK; Brockes JP
    Development; 1988 Dec; 104(4):657-68. PubMed ID: 3268408
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential expression of myogenic regulatory genes and Msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs.
    Simon HG; Nelson C; Goff D; Laufer E; Morgan BA; Tabin C
    Dev Dyn; 1995 Jan; 202(1):1-12. PubMed ID: 7703517
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.
    Pavlath GK; Thaloor D; Rando TA; Cheong M; English AW; Zheng B
    Dev Dyn; 1998 Aug; 212(4):495-508. PubMed ID: 9707323
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regeneration of the urodele limb: a review.
    Nye HL; Cameron JA; Chernoff EA; Stocum DL
    Dev Dyn; 2003 Feb; 226(2):280-94. PubMed ID: 12557206
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Beta cell transdifferentiation does not contribute to preneoplastic/metaplastic ductal lesions of the pancreas by genetic lineage tracing in vivo.
    Strobel O; Dor Y; Stirman A; Trainor A; Fernández-del Castillo C; Warshaw AL; Thayer SP
    Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4419-24. PubMed ID: 17360539
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nerve-independence of limb regeneration in larval Xenopus laevis is correlated to the level of fgf-2 mRNA expression in limb tissues.
    Cannata SM; Bagni C; Bernardini S; Christen B; Filoni S
    Dev Biol; 2001 Mar; 231(2):436-46. PubMed ID: 11237471
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transdifferentiation as a basis for amphibian limb regeneration.
    Tsonis PA; Washabaugh CH; Del Rio-Tsonis K
    Semin Cell Biol; 1995 Jun; 6(3):127-35. PubMed ID: 7548851
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular mechanisms for thyroid hormone-induced remodeling in the amphibian digestive tract: a model for studying organ regeneration.
    Ishizuya-Oka A; Shi YB
    Dev Growth Differ; 2005 Dec; 47(9):601-7. PubMed ID: 16316405
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Early fin primordia of zebrafish larvae regenerate by a similar growth control mechanism with adult regeneration.
    Kawakami A; Fukazawa T; Takeda H
    Dev Dyn; 2004 Dec; 231(4):693-9. PubMed ID: 15499559
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [The immune system and regenerative processes].
    Alekperov RT; Miagkova LP
    Klin Med (Mosk); 1991 Jun; 69(6):17-23. PubMed ID: 1774902
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.