These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22348046)

  • 1. Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm.
    Jollivet D; Mary J; Gagnière N; Tanguy A; Fontanillas E; Boutet I; Hourdez S; Segurens B; Weissenbach J; Poch O; Lecompte O
    PLoS One; 2012; 7(2):e31150. PubMed ID: 22348046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome Evolution of Deep-Sea Hydrothermal Vent Alvinellid Polychaetes Supports the Ancestry of Thermophily and Subsequent Adaptation to Cold in Some Lineages.
    Fontanillas E; Galzitskaya OV; Lecompte O; Lobanov MY; Tanguy A; Mary J; Girguis PR; Hourdez S; Jollivet D
    Genome Biol Evol; 2017 Feb; 9(2):279-296. PubMed ID: 28082607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep transcriptome-sequencing and proteome analysis of the hydrothermal vent annelid Alvinella pompejana identifies the CvP-bias as a robust measure of eukaryotic thermostability.
    Holder T; Basquin C; Ebert J; Randel N; Jollivet D; Conti E; Jékely G; Bono F
    Biol Direct; 2013 Jan; 8():2. PubMed ID: 23324115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic patterns of divergence in the early and late steps of speciation of the deep-sea vent thermophilic worms of the genus Alvinella.
    Thomas-Bulle C; Bertrand D; Nagarajan N; Copley RR; Corre E; Hourdez S; Bonnivard É; Claridge-Chang A; Jollivet D
    BMC Ecol Evol; 2022 Sep; 22(1):106. PubMed ID: 36057769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into metazoan evolution from Alvinella pompejana cDNAs.
    Gagnière N; Jollivet D; Boutet I; Brélivet Y; Busso D; Da Silva C; Gaill F; Higuet D; Hourdez S; Knoops B; Lallier F; Leize-Wagner E; Mary J; Moras D; Perrodou E; Rees JF; Segurens B; Shillito B; Tanguy A; Thierry JC; Weissenbach J; Wincker P; Zal F; Poch O; Lecompte O
    BMC Genomics; 2010 Nov; 11():634. PubMed ID: 21080938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The splicing factor U2AF65 is functionally conserved in the thermotolerant deep-sea worm Alvinella pompejana.
    Henscheid KL; Shin DS; Cary SC; Berglund JA
    Biochim Biophys Acta; 2005 Mar; 1727(3):197-207. PubMed ID: 15777616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal limit for metazoan life in question: in vivo heat tolerance of the Pompeii worm.
    Ravaux J; Hamel G; Zbinden M; Tasiemski AA; Boutet I; Léger N; Tanguy A; Jollivet D; Shillito B
    PLoS One; 2013; 8(5):e64074. PubMed ID: 23734185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation.
    Das S; Paul S; Bag SK; Dutta C
    BMC Genomics; 2006 Jul; 7():186. PubMed ID: 16869956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the limit of metazoan thermal tolerance via comparative proteomics: thermally induced changes in protein abundance by two hydrothermal vent polychaetes.
    Dilly GF; Young CR; Lane WS; Pangilinan J; Girguis PR
    Proc Biol Sci; 2012 Aug; 279(1741):3347-56. PubMed ID: 22553092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular adaptation to an extreme environment: origin of the thermal stability of the pompeii worm collagen.
    Sicot FX; Mesnage M; Masselot M; Exposito JY; Garrone R; Deutsch J; Gaill F
    J Mol Biol; 2000 Sep; 302(4):811-20. PubMed ID: 10993725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermophilic Adaptation in Prokaryotes Is Constrained by Metabolic Costs of Proteostasis.
    Venev SV; Zeldovich KB
    Mol Biol Evol; 2018 Jan; 35(1):211-224. PubMed ID: 29106597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and function of the first antibiotic isolated from a vent organism: the extremophile metazoan Alvinella pompejana.
    Tasiemski A; Jung S; Boidin-Wichlacz C; Jollivet D; Cuvillier-Hot V; Pradillon F; Vetriani C; Hecht O; Sönnichsen FD; Gelhaus C; Hung CW; Tholey A; Leippe M; Grötzinger J; Gaill F
    PLoS One; 2014; 9(4):e95737. PubMed ID: 24776651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly sensitive avoidance plays a key role in sensory adaptation to deep-sea hydrothermal vent environments.
    Ogino T; Maegawa S; Shigeno S; Fujikura K; Toyohara H
    PLoS One; 2018; 13(1):e0189902. PubMed ID: 29298328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content.
    Singer GA; Hickey DA
    Gene; 2003 Oct; 317(1-2):39-47. PubMed ID: 14604790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes.
    Wang GZ; Lercher MJ
    BMC Evol Biol; 2010 Aug; 10():263. PubMed ID: 20807394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and characterisation of mutations responsible for allele-specific protein thermostabilities at the Mn-superoxide dismutase gene in the deep-sea hydrothermal vent polychaete Alvinella pompejana.
    Bruneaux M; Mary J; Verheye M; Lecompte O; Poch O; Jollivet D; Tanguy A
    J Mol Evol; 2013 May; 76(5):295-310. PubMed ID: 23608997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaining and losing the thermophilic adaptation in prokaryotes.
    Puigbò P; Pasamontes A; Garcia-Vallve S
    Trends Genet; 2008 Jan; 24(1):10-4. PubMed ID: 18054113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes.
    Hurst LD; Merchant AR
    Proc Biol Sci; 2001 Mar; 268(1466):493-7. PubMed ID: 11296861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genome of a vestimentiferan tubeworm (Ridgeia piscesae) provides insights into its adaptation to a deep-sea environment.
    Wang M; Ruan L; Liu M; Liu Z; He J; Zhang L; Wang Y; Shi H; Chen M; Yang F; Zeng R; He J; Guo C; Chen J
    BMC Genomics; 2023 Feb; 24(1):72. PubMed ID: 36774470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic analysis reveals insights into deep-sea adaptations of the dominant species, Shinkaia crosnieri (Crustacea: Decapoda: Anomura), inhabiting both hydrothermal vents and cold seeps.
    Cheng J; Hui M; Sha Z
    BMC Genomics; 2019 May; 20(1):388. PubMed ID: 31103028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.