BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 22348271)

  • 1. Multifunctional nanoagent for thrombus-targeted fibrinolytic therapy.
    McCarthy JR; Sazonova IY; Erdem SS; Hara T; Thompson BD; Patel P; Botnaru I; Lin CP; Reed GL; Weissleder R; Jaffer FA
    Nanomedicine (Lond); 2012 Jul; 7(7):1017-28. PubMed ID: 22348271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and treatment of intravascular thrombi with magnetofluorescent nanoparticles.
    Erdem SS; Sazonova IY; Hara T; Jaffer FA; McCarthy JR
    Methods Enzymol; 2012; 508():191-209. PubMed ID: 22449927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel and emerging therapies: thrombus-targeted fibrinolysis.
    Lippi G; Mattiuzzi C; Favaloro EJ
    Semin Thromb Hemost; 2013 Feb; 39(1):48-58. PubMed ID: 23034825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Releasing the Brakes on the Fibrinolytic System in Pulmonary Emboli: Unique Effects of Plasminogen Activation and α2-Antiplasmin Inactivation.
    Singh S; Houng A; Reed GL
    Circulation; 2017 Mar; 135(11):1011-1020. PubMed ID: 28028005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P-selectin-targeting of the fibrin selective thrombolytic Desmodus rotundus salivary plasminogen activator alpha1.
    Dong N; Da Cunha V; Citkowicz A; Wu F; Vincelette J; Larsen B; Wang YX; Ruan C; Dole WP; Morser J; Wu Q; Pan J
    Thromb Haemost; 2004 Nov; 92(5):956-65. PubMed ID: 15543321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes.
    Murciano JC; Medinilla S; Eslin D; Atochina E; Cines DB; Muzykantov VR
    Nat Biotechnol; 2003 Aug; 21(8):891-6. PubMed ID: 12845330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood Accessibility to Fibrin in Venous Thrombosis is Thrombus Age-Dependent and Predicts Fibrinolytic Efficacy: An In Vivo Fibrin Molecular Imaging Study.
    Stein-Merlob AF; Kessinger CW; Erdem SS; Zelada H; Hilderbrand SA; Lin CP; Tearney GJ; Jaff MR; Reed GL; Henke PK; McCarthy JR; Jaffer FA
    Theranostics; 2015; 5(12):1317-27. PubMed ID: 26516370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct delivery of plasmin using clot-anchoring thrombin-responsive nanoparticles for targeted fibrinolytic therapy.
    Sun M; Hao Pontius MH; Yang S; Pendekanti T; Raghunathan S; Shavit JA; Sen Gupta A
    J Thromb Haemost; 2023 Apr; 21(4):983-994. PubMed ID: 36696210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clot penetration and retention by plasminogen activators promote fibrinolysis.
    Marcos-Contreras OA; Ganguly K; Yamamoto A; Shlansky-Goldberg R; Cines DB; Muzykantov VR; Murciano JC
    Biochem Pharmacol; 2013 Jan; 85(2):216-22. PubMed ID: 23098998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Peptide and Recombinant Tissue Plasminogen Activator Conjugated Poly(Lactic-Co-Glycolic Acid) (PLGA) Magnetic Nanoparticles for Dual Targeted Thrombolytic Therapy.
    Chen HA; Ma YH; Hsu TY; Chen JP
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32294917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elongated Plant Virus-Based Nanoparticles for Enhanced Delivery of Thrombolytic Therapies.
    Pitek AS; Wang Y; Gulati S; Gao H; Stewart PL; Simon DI; Steinmetz NF
    Mol Pharm; 2017 Nov; 14(11):3815-3823. PubMed ID: 28881141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibrin-specificity of a plasminogen activator affects the efficiency of fibrinolysis and responsiveness to ultrasound: comparison of nine plasminogen activators in vitro.
    Sakharov DV; Barrertt-Bergshoeff M; Hekkenberg RT; Rijken DC
    Thromb Haemost; 1999 Apr; 81(4):605-12. PubMed ID: 10235448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis.
    Marsh JN; Senpan A; Hu G; Scott MJ; Gaffney PJ; Wickline SA; Lanza GM
    Nanomedicine (Lond); 2007 Aug; 2(4):533-43. PubMed ID: 17716136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro clot lysis as a potential indicator of thrombus resistance to fibrinolysis--study in healthy subjects and correlation with blood fibrinolytic parameters.
    Colucci M; Scopece S; Gelato AV; Dimonte D; Semeraro N
    Thromb Haemost; 1997 Apr; 77(4):725-9. PubMed ID: 9134650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative thrombolytic properties of tissue-type plasminogen activator (t-PA), single-chain urokinase-type plasminogen activator (u-PA) and K1K2Pu (a t-PA/u-PA chimera) in a combined arterial and venous thrombosis model in the dog.
    Lu HR; Wu Z; Pauwels P; Lijnen HR; Collen D
    J Am Coll Cardiol; 1992 May; 19(6):1350-9. PubMed ID: 1342779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and Characterization of Plasmin-Independent Thrombolytic Enzymes.
    Hassan MM; Sharmin S; Kim HJ; Hong ST
    Circ Res; 2021 Feb; 128(3):386-400. PubMed ID: 33292062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic life of activated factor XIII in thrombi. Implications for fibrinolytic resistance and thrombus aging.
    Robinson BR; Houng AK; Reed GL
    Circulation; 2000 Sep; 102(10):1151-7. PubMed ID: 10973845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fibrinogen-Mimicking, Activated-Platelet-Sensitive Nanocoacervate Enhances Thrombus Targeting and Penetration of Tissue Plasminogen Activator for Effective Thrombolytic Therapy.
    Huang Y; Jiang J; Ren J; Guo Y; Zhao Q; Zhou J; Li Y; Chen R
    Adv Healthc Mater; 2022 Oct; 11(19):e2201265. PubMed ID: 35864062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chemical conjugation of recombinant single-chain urokinase-type plasminogen activator with monoclonal antiplatelet antibodies on platelet aggregation and on plasma clot lysis in vitro and in vivo.
    Dewerchin M; Lijnen HR; Stassen JM; De Cock F; Quertermous T; Ginsberg MH; Plow EF; Collen D
    Blood; 1991 Aug; 78(4):1005-18. PubMed ID: 1831057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy.
    Boulaftali Y; Lamrani L; Rouzaud MC; Loyau S; Jandrot-Perrus M; Bouton MC; Ho-Tin-Noé B
    Thromb Haemost; 2012 May; 107(5):962-71. PubMed ID: 22552380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.