BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22348619)

  • 1. Calculations of absorbed fractions in small water spheres for low-energy monoenergetic electrons and the Auger-emitting radionuclides (123)Ι and (125)Ι.
    Bousis C; Emfietzoglou D; Nikjoo H
    Int J Radiat Biol; 2012 Dec; 88(12):916-21. PubMed ID: 22348619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular S-factors for low-energy electrons: a comparison of Monte Carlo simulations and continuous-slowing-down calculations.
    Emfietzoglou D; Kostarelos K; Hadjidoukas P; Bousis C; Fotopoulos A; Pathak A; Nikjoo H
    Int J Radiat Biol; 2008 Dec; 84(12):1034-44. PubMed ID: 19061127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E
    Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Auger effect in physical and biological research.
    Nikjoo H; Emfietzoglou D; Charlton DE
    Int J Radiat Biol; 2008 Dec; 84(12):1011-26. PubMed ID: 19061125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdosimetry of low-energy electrons.
    Liamsuwan T; Emfietzoglou D; Uehara S; Nikjoo H
    Int J Radiat Biol; 2012 Dec; 88(12):899-907. PubMed ID: 22668077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorbed fractions for electrons and beta particles in spheres of various sizes.
    Siegel JA; Stabin MG
    J Nucl Med; 1994 Jan; 35(1):152-6. PubMed ID: 8271037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of cellular S-values using Geant4-DNA: The effect of cell geometry.
    Šefl M; Incerti S; Papamichael G; Emfietzoglou D
    Appl Radiat Isot; 2015 Oct; 104():113-23. PubMed ID: 26159660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2008 Jul; 53(14):3739-61. PubMed ID: 18574312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The COOLER Code: A Novel Analytical Approach to Calculate Subcellular Energy Deposition by Internal Electron Emitters.
    Siragusa M; Baiocco G; Fredericia PM; Friedland W; Groesser T; Ottolenghi A; Jensen M
    Radiat Res; 2017 Aug; 188(2):204-220. PubMed ID: 28621586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Monte Carlo simulation of Auger cascades.
    Pomplun E; Booz J; Charlton DE
    Radiat Res; 1987 Sep; 111(3):533-52. PubMed ID: 3659286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo Electron Track Structure Calculations in Liquid Water Using a New Model Dielectric Response Function.
    Emfietzoglou D; Papamichael G; Nikjoo H
    Radiat Res; 2017 Sep; 188(3):355-368. PubMed ID: 28650774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CELLDOSE: a Monte Carlo code to assess electron dose distribution--S values for 131I in spheres of various sizes.
    Champion C; Zanotti-Fregonara P; Hindié E
    J Nucl Med; 2008 Jan; 49(1):151-7. PubMed ID: 18077517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dosimetry on sub-cellular level for intracellular incorporated auger-electron-emitting radionuclides: a comparison of Monte Carlo simulations and analytic calculations.
    Bousis C
    Radiat Prot Dosimetry; 2011 Jan; 143(1):33-41. PubMed ID: 20959340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorbed fractions for electrons in ellipsoidal volumes.
    Amato E; Lizio D; Baldari S
    Phys Med Biol; 2011 Jan; 56(2):357-65. PubMed ID: 21160113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of various Monte Carlo track structure codes for energetic electrons in gaseous and liquid water.
    Nikjoo H; Uehara S
    Basic Life Sci; 1994; 63():167-84; discussion 184-5. PubMed ID: 7755542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EGS4 Monte Carlo determination of the beta dose kernel in water.
    Simpkin DJ; Mackie TR
    Med Phys; 1990; 17(2):179-86. PubMed ID: 2333044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5-18 eV) electron interactions with DNA.
    Rezaee M; Hunting DJ; Sanche L
    Med Phys; 2014 Jul; 41(7):072502. PubMed ID: 24989405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo Evaluation of Auger Electron-Emitting Theranostic Radionuclides.
    Falzone N; Fernández-Varea JM; Flux G; Vallis KA
    J Nucl Med; 2015 Sep; 56(9):1441-6. PubMed ID: 26205298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm.
    Famulari G; Pater P; Enger SA
    Phys Med Biol; 2017 Jul; 62(13):5495-5508. PubMed ID: 28486214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation on a gold nanoparticle irradiated by electron beams.
    Chow JC; Leung MK; Jaffray DA
    Phys Med Biol; 2012 Jun; 57(11):3323-31. PubMed ID: 22572475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.