These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 22348702)

  • 1. Functional recovery after spinal cord injury in dogs treated with a combination of Matrigel and neural-induced adipose-derived mesenchymal Stem cells.
    Park SS; Lee YJ; Lee SH; Lee D; Choi K; Kim WH; Kweon OK; Han HJ
    Cytotherapy; 2012 May; 14(5):584-97. PubMed ID: 22348702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of human neural stem cell transplantation in canine spinal cord hemisection.
    Lee SH; Chung YN; Kim YH; Kim YJ; Park JP; Kwon DK; Kwon OS; Heo JH; Kim YH; Ryu S; Kang HJ; Paek SH; Wang KC; Kim SU; Yoon BW
    Neurol Res; 2009 Nov; 31(9):996-1002. PubMed ID: 19138477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton's jelly, and umbilical cord blood for treating spinal cord injuries in dogs.
    Ryu HH; Kang BJ; Park SS; Kim Y; Sung GJ; Woo HM; Kim WH; Kweon OK
    J Vet Med Sci; 2012 Dec; 74(12):1617-30. PubMed ID: 22878503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of canine umbilical cord blood-derived mesenchymal stem cell transplantation times: involvement of astrogliosis, inflammation, intracellular actin cytoskeleton pathways, and neurotrophin-3.
    Park SS; Byeon YE; Ryu HH; Kang BJ; Kim Y; Kim WH; Kang KS; Han HJ; Kweon OK
    Cell Transplant; 2011; 20(11-12):1867-80. PubMed ID: 21375803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of Matrigel as scaffold material for neural stem cell transplantation for treating spinal cord injury.
    Wang J; Chu R; Ni N; Nan G
    Sci Rep; 2020 Feb; 10(1):2576. PubMed ID: 32054865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Healing after the Co-Transplantation of HO-1 and BDNF Overexpressed Mesenchymal Stem Cells in the Subacute Spinal Cord Injury of Dogs.
    Khan IU; Yoon Y; Kim A; Jo KR; Choi KU; Jung T; Kim N; Son Y; Kim WH; Kweon OK
    Cell Transplant; 2018 Jul; 27(7):1140-1153. PubMed ID: 29909686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the combination of mesenchymal stromal cells and chondroitinase ABC on chronic spinal cord injury.
    Lee SH; Kim Y; Rhew D; Kuk M; Kim M; Kim WH; Kweon OK
    Cytotherapy; 2015 Oct; 17(10):1374-83. PubMed ID: 26188966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone marrow-derived mesenchymal stem cell transplantation for chronic spinal cord injury in rats: comparative study between intralesional and intravenous transplantation.
    Kim JW; Ha KY; Molon JN; Kim YH
    Spine (Phila Pa 1976); 2013 Aug; 38(17):E1065-74. PubMed ID: 23629485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional recovery after the transplantation of neurally differentiated mesenchymal stem cells derived from bone marrow in a rat model of spinal cord injury.
    Cho SR; Kim YR; Kang HS; Yim SH; Park CI; Min YH; Lee BH; Shin JC; Lim JB
    Cell Transplant; 2009; 18(12):1359-68. PubMed ID: 20184788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combination of taxol infusion and human umbilical cord mesenchymal stem cells transplantation for the treatment of rat spinal cord injury.
    Zhilai Z; Hui Z; Anmin J; Shaoxiong M; Bo Y; Yinhai C
    Brain Res; 2012 Oct; 1481():79-89. PubMed ID: 22960115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine.
    Han S; Xiao Z; Li X; Zhao H; Wang B; Qiu Z; Li Z; Mei X; Xu B; Fan C; Chen B; Han J; Gu Y; Yang H; Shi Q; Dai J
    Sci China Life Sci; 2018 Jan; 61(1):2-13. PubMed ID: 28527111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats.
    Nishio Y; Koda M; Kamada T; Someya Y; Yoshinaga K; Okada S; Harada H; Okawa A; Moriya H; Yamazaki M
    J Neurosurg Spine; 2006 Nov; 5(5):424-33. PubMed ID: 17120892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury.
    Kim Y; Jo SH; Kim WH; Kweon OK
    Stem Cell Res Ther; 2015 Nov; 6():229. PubMed ID: 26612085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of neurosphere differentiation potential of canine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells.
    Chung CS; Fujita N; Kawahara N; Yui S; Nam E; Nishimura R
    J Vet Med Sci; 2013 Jul; 75(7):879-86. PubMed ID: 23419261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of differentiated versus undifferentiated adipose tissue-derived stromal cell grafts on functional recovery after spinal cord contusion.
    Zhang HT; Luo J; Sui LS; Ma X; Yan ZJ; Lin JH; Wang YS; Chen YZ; Jiang XD; Xu RX
    Cell Mol Neurobiol; 2009 Dec; 29(8):1283-92. PubMed ID: 19533335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplantation of porcine embryonic stem cells and their derived neuronal progenitors in a spinal cord injury rat model.
    Yang JR; Liao CH; Pang CY; Huang LL; Chen YL; Shiue YL; Chen LR
    Cytotherapy; 2013 Feb; 15(2):201-8. PubMed ID: 23245953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermogel nanofiber induces human endometrial-derived stromal cells to neural differentiation: In vitro and in vivo studies in rat.
    Tavakol S; Aligholi H; Gorji A; Eshaghabadi A; Hoveizi E; Tavakol B; Rezayat SM; Ai J
    J Biomed Mater Res A; 2014 Dec; 102(12):4590-7. PubMed ID: 24532561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An In Vitro Comparison of the Neurotrophic and Angiogenic Activity of Human and Canine Adipose-Derived Mesenchymal Stem Cells (MSCs): Translating MSC-Based Therapies for Spinal Cord Injury.
    Delfi IRTA; Wood CR; Johnson LDV; Snow MD; Innes JF; Myint P; Johnson WEB
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32916959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.