These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 22349032)
1. Structural modifications of human albumin in diabetes. Guerin-Dubourg A; Catan A; Bourdon E; Rondeau P Diabetes Metab; 2012 Apr; 38(2):171-8. PubMed ID: 22349032 [TBL] [Abstract][Full Text] [Related]
2. Oxidative stresses induced by glycoxidized human or bovine serum albumin on human monocytes. Rondeau P; Singh NR; Caillens H; Tallet F; Bourdon E Free Radic Biol Med; 2008 Sep; 45(6):799-812. PubMed ID: 18616999 [TBL] [Abstract][Full Text] [Related]
3. Hyperglycemia induced structural and functional changes in human serum albumin of diabetic patients: a physico-chemical study. Neelofar K; Arif Z; Alam K; Ahmad J Mol Biosyst; 2016 Jul; 12(8):2481-9. PubMed ID: 27226040 [TBL] [Abstract][Full Text] [Related]
4. Role of albumin glycation on the erythrocyte aggregation: an in vitro study. Candiloros H; Muller S; Ziegler O; Donner M; Drouin P Diabet Med; 1996 Jul; 13(7):646-50. PubMed ID: 8840099 [TBL] [Abstract][Full Text] [Related]
5. Chromatographic assay of glycation adducts in human serum albumin glycated in vitro by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and intrinsic fluorescence. Ahmed N; Thornalley PJ Biochem J; 2002 May; 364(Pt 1):15-24. PubMed ID: 11988071 [TBL] [Abstract][Full Text] [Related]
6. Effect of aminoguanidine and copper(II) ions on the formation of advanced glycosylation end products. In vitro study on human serum albumin. Jakus V; Bauerová K; Rietbrock N Arzneimittelforschung; 2001; 51(4):280-3. PubMed ID: 11367867 [TBL] [Abstract][Full Text] [Related]
7. Structural and immunological characterization of Amadori-rich human serum albumin: role in diabetes mellitus. Arif B; Ashraf JM; Moinuddin ; Ahmad J; Arif Z; Alam K Arch Biochem Biophys; 2012 Jun; 522(1):17-25. PubMed ID: 22516656 [TBL] [Abstract][Full Text] [Related]
8. Characterization of advanced glycation end products for biochemical studies: side chain modifications and fluorescence characteristics. Schmitt A; Schmitt J; Münch G; Gasic-Milencovic J Anal Biochem; 2005 Mar; 338(2):201-15. PubMed ID: 15745740 [TBL] [Abstract][Full Text] [Related]
9. Contribution of superoxide to reduced antioxidant activity of glycoxidative serum albumin. Sakata N; Moh A; Takebayashi S Heart Vessels; 2002 Nov; 17(1):22-9. PubMed ID: 12434198 [TBL] [Abstract][Full Text] [Related]
10. Fluorometric and mass spectrometric analysis of nonenzymatic glycosylated albumin. Zoellner H; Hou JY; Hochgrebe T; Poljak A; Duncan MW; Golding J; Henderson T; Lynch G Biochem Biophys Res Commun; 2001 Jun; 284(1):83-9. PubMed ID: 11374874 [TBL] [Abstract][Full Text] [Related]
11. Formation of the molten globule-like state during prolonged glycation of human serum albumin. Sattarahmady N; Moosavi-Movahedi AA; Ahmad F; Hakimelahi GH; Habibi-Rezaei M; Saboury AA; Sheibani N Biochim Biophys Acta; 2007 Jun; 1770(6):933-42. PubMed ID: 17368729 [TBL] [Abstract][Full Text] [Related]
12. Advanced glycated human serum albumin as AGE-carrier protein in enzyme-linked immunosorbent assay. Benko B; Turk Z Clin Lab; 2008; 54(9-10):331-9. PubMed ID: 19097490 [TBL] [Abstract][Full Text] [Related]
13. Impairment of the antioxidant properties of serum albumin in patients with diabetes: protective effects of metformin. Faure P; Wiernsperger N; Polge C; Favier A; Halimi S Clin Sci (Lond); 2008 Feb; 114(3):251-6. PubMed ID: 17922677 [TBL] [Abstract][Full Text] [Related]
14. The role of mass spectrometry in the study of non-enzymatic protein glycation in diabetes: an update. Lapolla A; Fedele D; Seraglia R; Traldi P Mass Spectrom Rev; 2006; 25(5):775-97. PubMed ID: 16625652 [TBL] [Abstract][Full Text] [Related]
15. Glycation-induced inactivation of NADP(+)-dependent isocitrate dehydrogenase: implications for diabetes and aging. Kil IS; Lee JH; Shin AH; Park JW Free Radic Biol Med; 2004 Dec; 37(11):1765-78. PubMed ID: 15528036 [TBL] [Abstract][Full Text] [Related]
16. Influence of non-enzymatic post-translation modifications on the ability of human serum albumin to bind iron. Implications for non-transferrin-bound iron speciation. Silva AM; Hider RC Biochim Biophys Acta; 2009 Oct; 1794(10):1449-58. PubMed ID: 19505594 [TBL] [Abstract][Full Text] [Related]
17. The in vitro glycation of human serum albumin in the presence of Zn(II). Seneviratne C; Dombi GW; Liu W; Dain JA J Inorg Biochem; 2011 Dec; 105(12):1548-54. PubMed ID: 22071077 [TBL] [Abstract][Full Text] [Related]
18. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Lv L; Shao X; Chen H; Ho CT; Sang S Chem Res Toxicol; 2011 Apr; 24(4):579-86. PubMed ID: 21344933 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of human endothelial cell nitric oxide synthesis by advanced glycation end-products but not glucose: relevance to diabetes. Xu B; Ji Y; Yao K; Cao YX; Ferro A Clin Sci (Lond); 2005 Nov; 109(5):439-46. PubMed ID: 16022682 [TBL] [Abstract][Full Text] [Related]
20. Physicochemical studies on glycation-induced structural changes in human IgG. Ahmad S; Moinuddin ; Khan RH; Ali A IUBMB Life; 2012 Feb; 64(2):151-6. PubMed ID: 22241644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]