BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22349156)

  • 1. Magnetic resonance elastography methodology for the evaluation of tissue engineered construct growth.
    Curtis ET; Zhang S; Khalilzad-Sharghi V; Boulet T; Othman SF
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22349156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MR elastography monitoring of tissue-engineered constructs.
    Othman SF; Curtis ET; Plautz SA; Pannier AK; Butler SD; Xu H
    NMR Biomed; 2012 Mar; 25(3):452-63. PubMed ID: 21387443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical characterization of tissue-engineered cartilage using microscopic magnetic resonance elastography.
    Yin Z; Schmid TM; Yasar TK; Liu Y; Royston TJ; Magin RL
    Tissue Eng Part C Methods; 2014 Aug; 20(8):611-9. PubMed ID: 24266395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MR elastography for evaluating regeneration of tissue-engineered cartilage in an ectopic mouse model.
    Khalilzad-Sharghi V; Han Z; Xu H; Othman SF
    Magn Reson Med; 2016 Mar; 75(3):1209-17. PubMed ID: 25918870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic magnetic resonance elastography (microMRE).
    Othman SF; Xu H; Royston TJ; Magin RL
    Magn Reson Med; 2005 Sep; 54(3):605-15. PubMed ID: 16088876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity.
    Liu Y; Liu J; Fite BZ; Foiret J; Ilovitsh A; Leach JK; Dumont E; Caskey CF; Ferrara KW
    Phys Med Biol; 2017 May; 62(10):4083-4106. PubMed ID: 28426437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous magnetic resonance and optical elastography acquisitions: Comparison of displacement images and shear modulus estimations using a single vibration source.
    Brinker ST; Kearney SP; Royston TJ; Klatt D
    J Mech Behav Biomed Mater; 2018 Aug; 84():135-144. PubMed ID: 29775815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative 3D magnetic resonance elastography: Comparison with dynamic mechanical analysis.
    Arunachalam SP; Rossman PJ; Arani A; Lake DS; Glaser KJ; Trzasko JD; Manduca A; McGee KP; Ehman RL; Araoz PA
    Magn Reson Med; 2017 Mar; 77(3):1184-1192. PubMed ID: 27016276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion-weighted MRI-based Virtual Elastography for the Assessment of Liver Fibrosis.
    Kromrey ML; Le Bihan D; Ichikawa S; Motosugi U
    Radiology; 2020 Apr; 295(1):127-135. PubMed ID: 32043948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Future role of MR elastography in tissue engineering and regenerative medicine.
    Othman SF; Xu H; Mao JJ
    J Tissue Eng Regen Med; 2015 May; 9(5):481-7. PubMed ID: 23956239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance elastography of the brain: A study of feasibility and reproducibility using an ergonomic pillow-like passive driver.
    Huang X; Chafi H; Matthews KL; Carmichael O; Li T; Miao Q; Wang S; Jia G
    Magn Reson Imaging; 2019 Jun; 59():68-76. PubMed ID: 30858002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring cartilage tissue engineering using magnetic resonance spectroscopy, imaging, and elastography.
    Kotecha M; Klatt D; Magin RL
    Tissue Eng Part B Rev; 2013 Dec; 19(6):470-84. PubMed ID: 23574498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-dependent shear properties of annulus fibrosus and nucleus pulposus by magnetic resonance elastography.
    Beauchemin PF; Bayly PV; Garbow JR; Schmidt JLS; Okamoto RJ; Chériet F; Périé D
    NMR Biomed; 2018 Oct; 31(10):e3918. PubMed ID: 29727498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic resonance characterization of tissue engineered cartilage via changes in relaxation times, diffusion coefficient, and shear modulus.
    Yin Z
    Crit Rev Biomed Eng; 2014; 42(2):137-91. PubMed ID: 25403876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tabletop magnetic resonance elastography for the measurement of viscoelastic parameters of small tissue samples.
    Ipek-Ugay S; Drießle T; Ledwig M; Guo J; Hirsch S; Sack I; Braun J
    J Magn Reson; 2015 Feb; 251():13-8. PubMed ID: 25554945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concurrent 3D acquisition of diffusion tensor imaging and magnetic resonance elastography displacement data (DTI-MRE): Theory and in vivo application.
    Yin Z; Kearney SP; Magin RL; Klatt D
    Magn Reson Med; 2017 Jan; 77(1):273-284. PubMed ID: 26787007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A MRI-Compatible Combined Mechanical Loading and MR Elastography Setup to Study Deformation-Induced Skeletal Muscle Damage in Rats.
    Nelissen JL; de Graaf L; Traa WA; Schreurs TJ; Moerman KM; Nederveen AJ; Sinkus R; Oomens CW; Nicolay K; Strijkers GJ
    PLoS One; 2017; 12(1):e0169864. PubMed ID: 28076414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An automatic differentiation-based gradient method for inversion of the shear wave equation in magnetic resonance elastography: specific application in fibrous soft tissues.
    Chatelin S; Charpentier I; Corbin N; Meylheuc L; Vappou J
    Phys Med Biol; 2016 Jul; 61(13):5000-19. PubMed ID: 27300107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nondestructive evaluation of osteogenic differentiation in tissue-engineered constructs.
    Hong L; Peptan IA; Xu H; Magin RL
    J Orthop Res; 2006 May; 24(5):889-97. PubMed ID: 16583444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.