These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22349175)

  • 1. Energy expenditure estimate by heart-rate monitor and a portable electromagnetic coils system.
    Gastinger S; Nicolas G; Sorel A; Sefati H; Prioux J
    Int J Sport Nutr Exerc Metab; 2012 Apr; 22(2):117-30. PubMed ID: 22349175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method to estimate energy expenditure from abdominal and rib cage distances.
    Gastinger S; Sefati H; Nicolas G; Sorel A; Gratas-Delamarche A; Prioux J
    Eur J Appl Physiol; 2011 Nov; 111(11):2823-35. PubMed ID: 21416146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of an infrared LED device to measure heart rate and energy expenditure during rest and exercise.
    Lee CM; Gorelick M; Mendoza A
    J Sports Sci; 2011 Dec; 29(15):1645-53. PubMed ID: 21995327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity of the simultaneous heart rate-motion sensor technique for measuring energy expenditure.
    Strath SJ; Bassett DR; Thompson DL; Swartz AM
    Med Sci Sports Exerc; 2002 May; 34(5):888-94. PubMed ID: 11984311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of the evidence for the use of ventilation as a surrogate measure of energy expenditure.
    Gastinger S; Donnelly A; Dumond R; Prioux J
    JPEN J Parenter Enteral Nutr; 2014 Nov; 38(8):926-38. PubMed ID: 24743390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features.
    Altini M; Penders J; Vullers R; Amft O
    Methods Inf Med; 2014; 53(5):382-8. PubMed ID: 25245124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy expenditure and heart rate response to breaking up sedentary time with three different physical activity interventions.
    Carter SE; Jones M; Gladwell VF
    Nutr Metab Cardiovasc Dis; 2015 May; 25(5):503-9. PubMed ID: 25816733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous heart rate-motion sensor technique to estimate energy expenditure.
    Strath SJ; Bassett DR; Swartz AM; Thompson DL
    Med Sci Sports Exerc; 2001 Dec; 33(12):2118-23. PubMed ID: 11740308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sitting comfortably versus lying down: is there really a difference in energy expenditure?
    Miles-Chan JL; Sarafian D; Montani JP; Schutz Y; Dulloo AG
    Clin Nutr; 2014 Feb; 33(1):175-8. PubMed ID: 24290343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using GPS, accelerometry and heart rate to predict outdoor graded walking energy expenditure.
    de Müllenheim PY; Chaudru S; Emily M; Gernigon M; Mahé G; Bickert S; Prioux J; Noury-Desvaux B; Le Faucheur A
    J Sci Med Sport; 2018 Feb; 21(2):166-172. PubMed ID: 29110991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy expenditure in children predicted from heart rate and activity calibrated against respiration calorimetry.
    Treuth MS; Adolph AL; Butte NF
    Am J Physiol; 1998 Jul; 275(1):E12-8. PubMed ID: 9688868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-living energy expenditure of adult men assessed by continuous heart-rate monitoring and doubly-labelled water.
    Davidson L; McNeill G; Haggarty P; Smith JS; Franklin MF
    Br J Nutr; 1997 Nov; 78(5):695-708. PubMed ID: 9389894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sitting to standing postural changes: Energy expenditure and a possible mechanism to alleviate sedentary behavior.
    Wang M; Song Y; Baker JS; Fekete G; Gu Y
    Physiol Int; 2018 Jun; 105(2):157-165. PubMed ID: 29975127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models.
    Altini M; Casale P; Penders J; Amft O
    J Biomed Inform; 2015 Aug; 56():195-204. PubMed ID: 26079263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation of the IDEEA™ activity monitor for estimating energy expenditure.
    Whybrow S; Ritz P; Horgan GW; Stubbs RJ
    Br J Nutr; 2013 Jan; 109(1):173-83. PubMed ID: 22464547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy Expenditure While Using Workstation Alternatives at Self-Selected Intensities.
    Schuna JM; Hsia DS; Tudor-Locke C; Johannsen NM
    J Phys Act Health; 2019 Feb; 16(2):141-148. PubMed ID: 30636499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of the Hexoskin wearable vest during lying, sitting, standing, and walking activities.
    Villar R; Beltrame T; Hughson RL
    Appl Physiol Nutr Metab; 2015 Oct; 40(10):1019-24. PubMed ID: 26360814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.